
271/469 Verilog Tutorial
Prof. Scott Hauck, last revised 7/9/20

Introduction
The following tutorial is intended to get you going quickly in circuit design in Verilog. It
isn’t a comprehensive guide to System Verilog, but should contain everything you need
to design circuits for your class.

If you have questions, or want to learn more about the language, I’d recommend Vahid
and Lysecky’s Verilog for Digital Design.

Modules
The basic building block of Verilog is a module. This is similar to a function or
procedure in C/C++/Java in that it performs a computation on the inputs to generate an
output. However, a Verilog module really is a collection of logic gates, and each time
you call a module you are creating that set of gates.

An example of a simple module:

AND_OR

andOut

orOut

A

B

TheAndGate

TheOrGate

AND_OR

andOut

orOut

A

B

TheAndGate

TheOrGate

// Compute the logical AND and OR of inputs A and B.
module AND_OR(andOut, orOut, A, B);
 output logic andOut, orOut;
 input logic A, B;

 and TheAndGate (andOut, A, B);
 or TheOrGate (orOut, A, B);
endmodule

We can analyze this line by line:
// Compute the logical AND and OR of inputs A and B.

The first line is a comment, designated by the //. Everything on a line after a // is ignored.
Comments can appear on separate lines, or at the end of lines of code.
module AND_OR(andOut, orOut, A, B);

 output logic andOut, orOut;
 input logic A, B;

The top of a module gives the name of the module (AND_OR in this case), and the list of
signals connected to that module. The subsequent lines indicate that the first two binary
values (andOut and orOut) are generated by this module, and are output from it, while the
next two (A, B) are inputs to the module.
 and TheAndGate (andOut, A, B);
 or TheOrGate (orOut, A, B);

This creates two gates: An AND gate, called “TheAndGate”, with output andOut, and
inputs A and B; An OR gate, called “TheOrGate”, with output orOut, and inputs A and B.
The format for creating or “instantiating” these gates is explained below.
endmodule

All modules must end with an endmodule statement.

Basic Gates
Simple modules can be built from several different types of gates:
buf <name> (OUT1, IN1); // Sets output equal to input
not <name> (OUT1, IN1); // Sets output to opposite of input

The <name> can be whatever you want, but start with a letter, and consist of letters,
numbers, and the underscore “_”. Avoid keywords from Verilog (i.e. “module”,
“output”, etc.).

There are multi-input gates as well, which can each take two or more inputs:
and <name> (OUT, IN1, IN2); // Sets output to AND of inputs
or <name> (OUT, IN1, IN2); // Sets output to OR of inputs
nand <name> (OUT, IN1, IN2); // Sets to NAND of inputs
nor <name> (OUT, IN1, IN2); // Sets output to NOR of inputs
xor <name> (OUT, IN1, IN2); // Sets output to XOR of inputs
xnor <name> (OUT, IN1, IN2); // Sets to XNOR of inputs

If you want to have more than two inputs to a multi-input gate, simply add more. For
example, this is a five-input and gate:
and <name> (OUT, IN1, IN2, IN3, IN4, IN5); // 5-input AND

Hierarchy
Just like we build up a complex software program by having procedures call
subprocedures, Verilog builds up complex circuits from modules that call submodules.
For example, we can take our previous AND_OR module, and use it to build a
NAND_NOR:

AND_OR

andOut

orOut

A

B

TheAndGate

TheOrGate

nandOut

norOut

X

Y

andVal

orVal

NAND_NOR

n1

n2

AND_OR

andOut

orOut

A

B

TheAndGate

TheOrGate

nandOut

norOut

X

Y

andVal

orVal

NAND_NOR

n1

n2

// Compute the logical AND and OR of inputs A and B.
module AND_OR(andOut, orOut, A, B);
 output logic andOut, orOut;
 input logic A, B;

 and TheAndGate (andOut, A, B);
 or TheOrGate (orOut, A, B);
endmodule

// Compute the logical NAND and NOR of inputs X and Y.
module NAND_NOR(nandOut, norOut, X, Y);
 output logic nandOut, norOut;
 input logic X, Y;
 logic andVal, orVal;

 AND_OR aoSubmodule (.andOut(andVal), .orOut(orVal),
 .A(X), .B(Y));
 not n1 (nandOut, andVal);
 not n2 (norOut, orVal);
endmodule

Notice that in the NAND_NOR procedure, we now use the AND_OR module as a gate
just like the standard Verilog “and”, “not”, and other gates. That is, we list the module’s
name, what we will call it in this procedure (“aoSubmodule”), and the outputs and inputs:
 AND_OR aoSubmodule (.andOut(andVal), .orOut(orVal),
 .A(X), .B(Y));

Note that unlike C/C++/Java where we use the order of parameters to indicate which
caller values connect to which submodule ports, in Verilog we explicitly name the ports.
That is, when we say:
 .andOut(andVal)

We mean that the “andVal” wires in the caller module are connected to the “andOut”
wires in the called submodule. This explicit naming tends to avoid mistakes, especially
when someone adds or deletes ports inside the submodule. Note that every signal name
in each module is distinct. That is, the same name can be used in different modules
independently. In fact, if the caller module wants to hook a wire to a port of a submodule
with the same name, there’s a shorthand for that. For example, if we had the call:
 AND_OR aoSubmodule (.andOut(andOut), .orOut(orVal),
 .A(A), .B(B));

We could write that alternatively as:
 AND_OR aoSubmodule (.andOut, .orOut(orVal), .A, .B);

This hooks andOut in the caller to andOut of the submodule, as well as A to A and B to
B.

Just as we had more than one not gate in the NAND_NOR module, you can also call the
same submodule more than once. So, we could add another AND_OR gate to the
NAND_NOR module if we chose to – we simply have to give it a different name (like
“n1” and “n2” on the not gates). Each call to the submodule creates new gates, so three
calls to AND_OR (which creates an AND gate and an OR gate in each call) would create
a total of 2*3 = 6 gates.

One new statement in this module is the “logic” statement:
 logic andVal, orVal;

This creates what are essentially local variables in a module. In this case, these are actual
wires that carry the signals from the output of the AND_OR gate to the inverters.

Note that we chose to put the not gates below the AND_OR in this procedure. The order
actually doesn’t matter – the calls to the modules hooks gates together, and the order they
“compute” in doesn’t depend at all on their placement order in the code – all execute in
parallel anyway. Thus, we could swap the order of the “not” and “AND_OR” lines in the
module freely.

Boolean Equations and “Assign”
You can also write out Boolean equations in Verilog within an “assign” statement, which
sets a “logic” variable to the result of a Boolean equation. Or is “|”, and is “&”, negation
is “~”, xor is “^”. For example, we can compute not((A and B) or (C and D)) by:
 assign F = ~((A & B) | (C & D));

True and False
Sometimes you want to force a value to true or false. We can do that with the numbers
“0” = false, and “1” = true. For example, if we wanted to compute the AND_OR of false
and some signal “foo”, we could do the following:
 AND_OR aoSubmodule (.andOut(andVal), .orOut(orVal),
 .A(0), .B(foo));

Delays
Normally Verilog statements are assumed to execute instantaneously. However, Verilog
does support some notion of delay. Specifically, we can say how long the basic gates in a
circuit take to execute with the # operator. For example:
// Compute the logical AND and OR of inputs A and B.
module AND_OR(andOut, orOut, A, B);
 output andOut, orOut;
 input A, B;

 and #5 TheAndGate (andOut, A, B);
 or #10 TheOrGate (orOut, A, B);
endmodule

This says that the and gate takes 5 “time units” to compute, while the or gate is twice as
slow, taking 10 “time units”. Note that the units of time can be whatever you want – as
long as you put in consistent numbers.

Defining constants
Sometimes you want to have named constants - variables whose value you set in one
place and use throughout a piece of code. For example, setting the delay of all units in a
module can be useful. We do that as follows:
// Compute the logical AND and OR of inputs A and B.
module AND_OR(andOut, orOut, A, B);
 output logic andOut, orOut;
 input logic A, B;
 parameter delay = 5;

 and #delay TheAndGate (andOut, A, B);
 or #delay TheOrGate (orOut, A, B);
endmodule

This sets the delay of both gates to the value of “delay”, which in this case is 5 time units.
If we wanted to speed up both gates, we could change the value in the parameter line to 2.

Parameterized Design
Parameters can also be inputs to designs, that allow the caller of the module to set the size
of features of that specific instance of the module. So, if we have a module such as:
module adder #(parameter WIDTH=5) (out, a, b);
 output logic [WIDTH-1:0] out;
 input logic [WIDTH-1:0] a, b;

 assign out = a + b;
endmodule

This defines a parameter “WIDTH” with a default value of 5 – any instantiation of the
adder module that does not specify a width will have all of the internal variable widths set
to 5. However, we can also instantiate other widths as well:

 // A 16-bit adder
 adder #(.WIDTH(16)) add1 (.out(o1), .a(a1), .b(b1));
 // A default-width adder, so 5-bit
 adder add2 (.out(o2), .a(a2), .b(b2));

Test benches
Once a circuit is designed, you need some way to test it. For example, we’d like to see
how the NAND_NOR circuit we designed earlier behaves. To do this, we create a test
bench. A test bench is a module that calls your device under test (DUT) with the desired
input patterns, and collects the results. For example consider the following:

AND_OR

andOut

orOut

A

B

TheAndGate

TheOrGate

nandOut

norOut

X

Y

andVal

orVal

NAND_NOR

n1

n2

$
m
o
n
i
t
o
r
(
$
t
i
m
e
,

,
a
,
o
,
R
,
S
)
;

initial
begin
R=1; S=1;
#10 R=0;
#10 S=0;
#10 R=1;
end

TEST

AND_OR

andOut

orOut

A

B

TheAndGate

TheOrGate

nandOut

norOut

X

Y

andVal

orVal

NAND_NOR

n1

n2

$
m
o
n
i
t
o
r
(
$
t
i
m
e
,

,
a
,
o
,
R
,
S
)
;

initial
begin
R=1; S=1;
#10 R=0;
#10 S=0;
#10 R=1;
end

TEST

// Compute the logical AND and OR of inputs A and B.
module AND_OR(andOut, orOut, A, B);
 output logic andOut, orOut;
 input logic A, B;

 and TheAndGate (andOut, A, B);
 or TheOrGate (orOut, A, B);
endmodule

// Compute the logical NAND and NOR of inputs X and Y.
module NAND_NOR(nandOut, norOut, X, Y);
 output logic nandOut, norOut;
 input logic X, Y;
 logic andVal, orVal;

 AND_OR aoSubmodule (.andOut(andOut), .orOut(orVal),
 .A(X), .B(Y));
 not n1 (nandOut, andVal);
 not n2 (norOut, orVal);
endmodule

module NAND_NOR_testbench; // No ports!
 logic X, Y;
 logic nandOut, norOut;

 initial begin // Stimulus
 X = 1; Y = 1; #10;
 X = 0; #10;
 Y = 0; #10;
 X = 1; #10;
 end

 NAND_NOR dut (.nandOut, .norOut, .X, .Y);

endmodule

The code to notice is that of the module “NAND_NOR_testbench”. It instantiates one
copy of the NAND_NOR gate, called “dut” (device under test), and hooks up “logic”
signals to all of the I/Os.

In order to provide test data to the dut, we have a stimulus block:
 initial begin // Stimulus
 X = 1; Y = 1; #10;
 X = 0; #10;
 Y = 0; #10;
 X = 1; #10;
 end

The code inside the “initial” statement is only executed once. It first sets X and Y to true.
Then, due to the “#10” the system waits 10 time units, keeping X and Y at the assigned
values. We then set X to false. Since Y wasn’t changed, it remains at true. Again we
wait 10 time units, and then we change Y to false (X remains at false). If we consider the
entire block, the inputs XY go through the pattern 11 -> 01 -> 00 -> 10, which tests all
input combinations for this circuit. Other orders are also possible. For example we could
have done:
 initial begin // Stimulus
 X = 0; Y = 0; #10;
 Y = 1; #10;
 X = 1; Y = 0; #10;
 Y = 1; #10;
 end

This goes through the pattern 00 -> 01 -> 10 -> 11. In fact, there’s a shorthand for doing
this format:
 integer i;
 initial begin // Stimulus
 for(i=0; i<4; i++) begin
 {X,Y} = i; #10;
 end

 end

We use the fact that integers are encoded in binary, and the binary values go through the
pattern 000, 001, 010, 011, 100, 101, … If you want to put N binary signals through all
combinations of inputs, then use the same code, but replace the upper limit of 4 in the
loop condition with the integer whose value is 2N.

Printing values to the console
Most development will use the waveforms in the simulator to show the state of wires
over time. However, sometimes in debugging it is useful to print messages as well – for
example, any time an error condition is found, you may want to print a text message
saying what the error is, and print the value of some variables. The $display command
does this. Specifically, if we did:
 initial begin // Stimulus
 #1000;
 if (err != 0)
 $display($time, , “Found an error, code: ”, err);
 end

$time prints the time the $display routine happens. The comma without anything before
it adds some space. The string and the value of err are also printed.

$display fires once, at the time specified. If you would like to be alerted whenever a
value changes, use $monitor:
 initial // Response
 $monitor($time, , SEL, I, J, , V);

This code prints whenever any of the variables being monitored changes.

Register Transfer Level (RTL) Code
In the earlier sections, we showed ways to do structural designs, where we tell the system
exactly how to perform the design. In RTL code we instead state what we want, and
allow the Verilog system to automatically determine how to do the computation.

Note: in RTL it is easy to forget how the hardware actually works, and pretend it’s
just C or Java. This is a great way to design AWFUL hardware. Because of this,
we will give you stylized ways of using the constructs, which will guide you towards
better versions. Our introductory logic class spends a lot of time showing what
hardware is generated from various Verilog structures – think about the hardware
your Verilog actually requires!

In each of these cases, RTL code is done in an “always” block. If the computation is
combination, it should be in an “always_comb” block, while computations that remember
things, and thus are state-holding, should be in an “always_ff”.

Begin-end

Begin and end statements merge together multiple statements into one, like the “{ }”
braces in C and Java. For statements below such as “if-then-else” and “case”, you can
use begin and end to merge together multiple statements.

If-then-else
 logic V1, V2;

 always_comb begin
 if (A == 1) begin
 V1 = 1;
 V2 = 0;
 end else if (A == 0 & B == 1) begin
 V1 = 1;
 V2 = 1;
 end else begin
 V1 = 0;
 V2 = 0;
 end
 end

You can set the output of a wire based upon the value of other signals. The if-then-else is
similar to software programming languages. Note however that you should make sure
that all signals are defined in all cases (i.e. it would be a problem to delete either V1 or
V2 from any of these clauses).

If you think through this code, it is equivalent to a logic function. For example, V1 is
true only when A == 1, or when A == 0 and B == 1. This is equivalent to V1 =
A+(not(A) * B) = A + B. Similarly V2 = not(A) * B.

case

As we move to multi-bit signals, that can take on values more than just 0 and 1, the case
statement becomes quite useful. The variable to be considered is placed in the “case ()”
statement, and then different values are listed, with the associated action. For example, in
the code below when the “state” variable is equal to 0, HEX is set to 0, while if the
“state” variable is equal to 1, HEX is set to 1, and so on. There must also always be a
“default” case, which is used when no other case matches. Also, like the if-then-else
statement, any variable set in any part of the case statement should be set in all states.
That is, dropping HEX from any of the “state” value lines would be incorrect.

In this code we use “1’bX” to indicate a 1-bit binary don’t care in the default case,
allowing the Verilog system to use Don’t Cares in the minimization.
 logic HEX;
 always_comb begin

case (state)
 0: HEX = 0;
 1: HEX = 1;
 2: HEX = 1;
 3: HEX = 0;
 4: HEX = 1;
 default: HEX = 1’bX;
 endcase
 end

Declaring Multi-bit Signals
So far we have seen “logic” statements that create single-bit signals (i.e. they are just 0 or
1). Often you’d like to represent multi-bit values (for example, a 3-bit variable that can
represent values 0..7). We can do this type of operation with the following declarations:
logic [2:0] foo; // a 3-bit signal (a bus)
logic [15:0] bar; // a 16-bit signal

These statements set up a set of individual wires, which can also be treated as a group.
For example, the “logic [2:0] foo;” declares a 3-bit signal, which has the MSB (the 22’s
place) as foo[2], the LSB (the 20’s place) as foo[0], and a middle bit of foo[1].

The individual signals can be used just like any other binary value in Verilog. For
example, we could do:
and a1(foo[2], foo[0], c);

This AND’s together c and the 1’s place of foo, and puts the result in the 4’s place of foo.

Multi-bit signals can also be passed together to a module:
module random(bus1, bus2);
 output logic [31:0] bus1;
 input logic [19:0] bus2;
 logic c;

 another_random ar1(.c, .bus2, .bus1);
endmodule

This module connects to two multi-bit signals (32 and 20 bits respectively), and passes
both of them to another module “another_random”, which also connects to a single-bit
wire c.

Multi-bit Signals – Common Error
When you are declaring multi-bit signals, you may get a warning message like:

"Warning! Port sizes differ in port connection (port 2) [Verilog-PCDPC] "

look for something like the following in your code:
input logic [31:0] d, reset, clk;

What that line does is declare 3 32-bit values. That is, d is [31:0] AND reset is [31:0]
AND clk is [31:0]

What you actually want is:
input logic [31:0] d;
input logic reset, clk;

Which declares d to be a 32-bit value, and reset and clk are 1-bit values.

Multi-bit Constants
In test benches and other places, you may want to assign a value to a multi-bit signal.
You can do this in several ways, shown in the following code:
logic [15:0] test;
initial begin // stimulus
 test = 12;
 #(10) test = 16'h1f;

#(10) test = 16'b01101;
end

The 16-bit variable test is assigned three different values. The first is in decimal, and
represents twelve. The second is a hexadecimal number (specified by the 'h) 1f, or 16+15

= 31. The last is a binary number (specified by the 'b) 01101 = 1+4+8 = 13. In each case
the value is assigned, in the equivalent binary, to the variable test. Unspecified bits are
padded to 0. So, the line:
test = 12;

is equivalent to:
test = ‘b0000000000001100;

It sets test[2] and test[3] to 1, and all other bits to 0.

For Loops for Multi-bit Signals
Sometimes when we need to reorganize signals in a bus, a FOR loop can be helpful,
particularly with mathematical calculations for the indexes.
 logic [7:0] LEDG;
 integer i;

always_comb begin
 for (i=0; i<8; i=i+1)
 LEDG[7-i] = GPIO_0[28+i];
 for (i=0; i<10; i=i+1)
 LEDR[9-i] = GPIO_0[18+i];
 end

In this code we set LEDG[7] = GPIO_0[28], LEDG[6] = GPIO_0[29], etc.

Multi-Dimensional Buses
Sometimes it can be useful to have structures with more than one dimension – for
example, we might want to hold 16 8-bit values. Verilog allows you to define multiple
sets of indexes for a variable:
 logic [15:0][7:0] string;

To index a value, you move left-to-right through the indices. For example, the following
code sets all the bits of a 4-dimensions bus to 0:
 logic [15:0][9:0][7:0][3:0] vals;
 integer i, j, k, l;

 always_comb begin
 for(i=0; i <= 15; i++)
 for(j=0; j<=9; j++)
 for(k=0; k<=7; k++)
 for(l=0; l<=3; l++)
 vals[i][j][k][l] = 1'b0;
 end

Subsets
Sometimes you want to break apart multi-bit values. We can do that by selecting a subset
of a value. For example, if we have
logic [31:0] foo;
initial foo[3:1] = 3'b101;

This would set foo[3] = 1, foo[2] = 0, and foo[1] = 1. All other bits of foo will not be
touched. We could also use the same form to take a subset of a multi-bit wire and pass it
as an input to another module.

Note that this subdividing can be done to save you work in creating large, repetitive
structures. For example, consider the definition of a simple 16-bit register built from a
base D_FF unit:
module D_FF16(q, d, clk);
 output logic [15:0] q;
 input logic [15:0] d;
 input logic clk;

 D_FF d0 (.q(q[0]), .d(d[0]), .clk);
 D_FF d1 (.q(q[1]), .d(d[1]), .clk);
…
 D_FF d15(.q(q[15]), .d(d[15]), .clk);
endmodule

with the 16 separate D_FF lines there’s a good likelihood you’ll make a mistake
somewhere. For a 32-bit register it’s almost guaranteed. We can do it a bit more safely
by repeatedly breaking down the problem into pieces. For example, write a 4-bit register,
and use it to build the 16-bit register:
module D_FF4(q, d, clk);
 output logic [3:0] q;
 input logic [3:0] d;
 input logic clk;

 D_FF d0(.q(q[0]), .d(d[0]), .clk);
 D_FF d1(.q(q[1]), .d(d[1]), .clk);
 D_FF d2(.q(q[2]), .d(d[2]), .clk);
 D_FF d3(.q(q[3]), .d(d[3]), .clk);
endmodule

module D_FF16(q, d, clk);
 output logic [15:0] q;
 input logic [15:0] d;
 input logic clk;

 D_FF4 d0(.q(q[3:0]), .d(d[3:0]), .clk);
 D_FF4 d1(.q(q[7:4]), .d(d[7:4]), .clk);
 D_FF4 d2(.q(q[11:8]), .d(d[11:8]), .clk);
 D_FF4 d3(.q(q[15:12]), .d(d[15:12]), .clk);
endmodule

Concatenations
Sometimes instead of breaking apart a bus into pieces, you instead want to group things
together. Anything inside {}’s gets grouped together. For example, if we want to swap
the low and high 8 bits of an input to a D_FF16 we could do:

 logic [15:0] data, result;

 D_FF16 d1(.q(result), .d({data[7:0], data[15:8]}), .clk);

Pretty much anything can go into the concatenation – constants, subsets, buses, single
wires, etc.

Bit Replication in Concatenations
Sometimes you would like to copy a bit multiple times in a concatenate (very useful for
sign-extension in 2’s Complement numbers). You can do that with the following
construct:
 logic [15:0] large;
 logic [7:0] small;

 assign large = {{8{small[7]}, small}};

Here, the first bit is copied 8 times, then the entire number appears. This means you will
have 9 instances of the top bit, followed by one of each of the next bits.

Sequential Logic
In combinational logic we start an always block with “always_comb”, which means the
logic output is recomputed every time any of the inputs changes. For sequential logic, we
need to introduce a clock, which will require a somewhat different always statement:

// D flip-flop w/synchronous reset
module D_FF (q, d, reset, clk);
 output logic q;
 input logic d, reset, clk;

 always_ff @(posedge clk) begin // Hold val until clock edge
 if (reset)
 q <= 0; // On reset, set to 0
 else
 q <= d; // Otherwise out = d
 end

endmodule

Most of this should be familiar. The new part is the “always_ff @(posedge clk)”. We
capture the input with the “always_ff @(posedge clk)”, which says to only execute the
following statements at the instant you see a positive edge of the clk. That means we
have a positive edge-triggered flip-flop. We can build a negative edge-triggered flip-flop
via “always_ff @(negedge clk)”.

Assignment styles: = vs. <=
Verilog includes two different types of ways to assign values to variables: = vs. <=. They
are subtly different:

 = The assignment occurs immediately. A subsequent line will see the new value.
So, a = b; c = a; will set both a and c to the value contained in b.

 <= The value to be assigned is computed immediately, but the assignment itself is
delayed until all simultaneously executing code has been evaluated. So, a<=b;
b<=a; will swap the values of a and b. However, a<=b; c<= a; will set a to the
value of b, and c to the old value of a (the value before the value of b is written to
a).

The two kinds of assignment can be confusing, and mixing them in one “always” block is
a recipe for disaster. However, things are much easier if you obey the following rules:

1. Inside always_ffs @(posedge clk) blocks use <= for everything (except the
iteration variable in a for loop).

2. For assign statements and always_comb blocks use = for everything.

3. Avoid complex logic in always_ff @(posedge clk) blocks – instead, compute
complex logic in always_comb blocks, and then just have statements like “ps <=
ns” in always_ff @(posedge clk) blocks.

Clocks
A sequential circuit will need a clock. We can make the test bench provide it with the
following code:
logic clk;
parameter PERIOD = 100; // period = length of clock
 // Make the clock LONG to test
initial begin
 clk <= 0;
 forever #(PERIOD/2) clk = ~clk;
end

This code would be put into the testbench code for your system, and all modules that are
sequential will take the clock as an input.

Enumerations
For FSMs and the like, we want to have variables that can take on one of multiple named
values – while we could just use numbers, names are easier to use. Sometimes we may
use PARAMETER statements to set up names for variables, but for FSM state variables
enumerations work better. For example, the following code defines the allowable states
for an FSM:
 enum { RED, BLUE, GREEN} ps, ns;

This defines two variables, ns and ps, and requires that their values be either RED,
GREEN, or BLUE. We can test the value of variables, and assign new values, using
those names:
 always_comb begin
 if (ps == RED)
 ns = BLUE;
 else
 …

Verilog will then assign specific values to each of these variables. If you want to set
specific values, you can use:
 enum { RED=0, BLUE=1, GREEN=2 } ps, ns;

Make sure to have one of the values be equal to 0, but the other values can be whatever
you want. One last tip – if you want to print the value of an enum variable ps, you can
call ps.name to return the string for that value (i.e. if ps is 0, ps.name will return RED).

Example Finite State Machine
Here’s an example of a simple sequential circuit, with all of its gory details. Note that
this circuit computes parity – the output is true when the circuit has seen an odd number
of trues on its input.

// Parity example

module parity (out, in, reset, clk);
 output logic out;
 input logic in, reset, clk;
 logic ps, ns;

 always_comb begin
 ns = ps ^ in;
 end

 always_ff @(posedge clk) begin
 if (reset)
 ps <= 0;
 else
 ps <= ns;
 end

 assign out = ps;
endmodule

module parity_testbench;
 logic in, reset, clk;
 logic out;

 parameter period = 100;

 parity dut (.in, .reset, .clk, .out);

 initial begin
 clk <= 1;
 forever #(period/2) clk <= ~clk;
 end

 initial begin
 reset <= 1; in <= 0; @(posedge clk);
 reset <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 @(posedge clk);
 in <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 0; @(posedge clk);
 @(posedge clk);
 $stop();
 end

endmodule

Advanced Features – assert statements
As you design larger systems, you will often have assumptions you’d like to make sure
are true. For example, you may have a parameterized module, but there are only a few
legal values of that parameter. Or, you may have a module that assumes the inputs obey
certain requirements. You could check this via simulation, but as the design gets larger
you are more and more likely to miss things.

The solution to this is the “assert” statement, that in simulation will raise an error
whenever the value inside the assertion is false. So, if we have a parameter with only a
few legal values, we can test it with an assertion inside the module:

 initial assert(WIDTH>1 && WIDTH<=19);

If we require that at least one input to a unit must always be true, we can test it with an
always-running assertion:

 always_ff @(posedge clk) begin
 assert(reset || a != 3’b000 || b);
 end

Advanced Features – generate statements
Earlier in this tutorial we showed how to build a 16-bit register by using a hierarchy of
modules, one that does a 4-bit register, and another that uses 4 of these 4-bit registers to
build a 16-bit register. If we want to make a completely parameterized version, where
the size can be any length at all, we can use a generate statement. Generate allows us to
put submodule calls and other logic within “for” loops and “if” statements, allowing the
logic to decide the number of modules actually instantiated. Note that any iteration
variables must be declared “genvar”, and any for loops or if statements must have a begin
– end block with a label (an identifier, such as “eachDff” in the code below).

module DFF_VAR #(parameter WIDTH=8) (q, d, clk);
 output logic [WIDTH-1:0] q;
 input logic [WIDTH-1:0] d;
 input logic clk;

 initial assert(WIDTH>0);

 genvar i;

 generate
 for(i=0; i<WIDTH; i++) begin : eachDff
 D_FF dff (.q(q[i]), .d(d[i]), .clk);
 end
 endgenerate
endmodule

Note that for the case of the register, one could just use a parameter and the FSM format
to do the same thing:

module DFF_VAR #(parameter WIDTH=8) (q, d, clk);
 output logic [WIDTH-1:0] q;
 input logic [WIDTH-1:0] d;
 input logic clk;

 initial assert(WIDTH>0);

 always_ff @(posedge clk) begin
 q <= d;
 end
endmodule

But, the register is a simple way to show the power of generate statements, which can be
useful in some situations that often cannot be handled in any other way. Below are a few
other examples to help you see how generate statements can be used.

First is a version of a 99 position tug-of-war game, with edge conditions. Note that you
could also do the left and right edge positions outside of the generate loop and adjust the
loop variable accordingly.
module tugOfWar99 (clk, rst, L, R, leds);

 input logic clk, rst, L, R;
 output logic [98:0] leds;

 genvar i;
 generate
 for(i = 0; i < 99; i++) begin : eachLight

 // The right edge light
 if (i == 0)
 normal_light led (.clk, .rst, .L, .R,
.NL(leds[i+1]), .NR(1'b0), .lightOn(leds[i]));

 // The center light
 else if (i == 50)
 center_light led (.clk, .rst, .L, .R,
.NL(leds[i+1]), .NR(leds[i-1]), .lightOn(leds[i]));

 // The left edge light
 else if (i == 98)
 normal_light led (.clk, .rst, .L, .R,
.NL(1'b0), .NR(leds[i-1]), .lightOn(leds[i]));

 // Any other light
 else
 normal_light led (.clk, .rst, .L, .R,
.NL(leds[i+1]), .NR(leds[i-1]), .lightOn(leds[i]));

 end
 endgenerate

endmodule

Here is an example for setting up a control FSM for each position of a 16x16 LED array.
module controller2D(clk, rst, row_sel, col_sel, leds);

 input logic clk, rst;
 input logic [15:0] row_sel, col_sel;
 output logic [15:0][15:0] leds;

 genvar x,y;
 generate
 for(x = 0; x < 16; x++) begin : eachRow
 for(y = 0; y < 16; y++) begin: eachCol

 light pixel (.clk, .rst, .row(row_sel[x]),
.col(col_sel[y]), .lightOn(leds[x][y]));

 end
 end
 endgenerate
endmodule

module light (clk, rst, row, col, lightOn);

 input logic clk, rst, row, col;
 output logic lightOn;

 always_ff @ (posedge clk) begin
 if (rst)
 lightOn <= 1'b0;
 else
 lightOn <= row & col;
 end

endmodule

