
[bookmark: _Hlk82442320][bookmark: _Hlk25161725]

[bookmark: _Hlk5118283]

Advanced System on Chip Course
LAB 4: Programming a processor with Arm Assembly Language and C
Issue 1.0

Contents
1	Introduction	1
1.1	Learning Outcomes	1
2	Lab Exercise	1
2.1	Mixing Assembly Language and C Code	1
2.2	Main	1
2.3	Register Conventions	2
2.3.1	Calling functions and Passing Arguments	2
2.3.2	Temporary storage	2
2.3.3	Preserved Registers	2
2.3.4	Returning from Functions	2
2.4	String Copy	2
2.5	String Capitalization	3
3	Lab Procedure	5
4	Troubleshooting	13

[image: https://community.arm.com/cfs-filesystemfile/__key/communityserver-components-secureimagefileviewer/communityserver-blogs-components-weblogfiles-00-00-00-19-93/ARM_5F00_Education_5F00_vertical_5F00_blue.png_2D00_1800x1012x2.png?_=636836670764988716]

[image:]

	

[bookmark: _Toc86679933]Introduction
[bookmark: _Toc86679934]Learning Outcomes
In this module, we will program an Arm processor on a Fixed Virtual Platform using a mixture of Assembly language and C code.
At the end of this lab, you will be able to:
· Modify a C program with assembly subroutines to perform string copy and capitalization operations.
· Compile a C program and execute the program on a Fixed Virtual Platform in the Arm Development Studio tool.
· Demonstrate how to step through the code and examine register and variable values in debug mode.
· Identify known issues related to connection issues in the debug configuration and apply troubleshooting solutions.
[bookmark: _Toc86679935]Lab Exercise
[bookmark: _Toc86679936]Mixing Assembly Language and C Code
We will use Arm Development Studio with a C program, but add assembly subroutines to perform string copy and capitalization operations.
Note that some embedded systems are coded purely in assembly language, but most are coded in C with assembly language used only for time-critical processing, if at all. This is because the code development process is much faster (and hence less expensive) when writing in C when compared to assembly language.
Writing assembly code as functions that can be called from C code as C functions result in modular programs, which gives us the best of both worlds: the fast, modular development of C and the high performance of assembly code. It is also possible to add inline assembly code to C code, but this requires much greater knowledge of how compilers generate code.
[bookmark: _Toc86679937]Main
First, we will create the main C function. This function contains two variables (a and b) with character arrays.
int main(void)
{
 	const char a[] = "Hello world!";
 	char b[20];

		my_strcpy(a, b);
		my_capitalize(b);
	
		while (1)
			;
}
[bookmark: _Toc86679938]Register Conventions
There are certain register use conventions that we need to follow if we would like our assembly code to coexist with C code.
[bookmark: _Toc86679939]Calling functions and Passing Arguments
When a function calls a subroutine, it places the return address in the link register (LR). The arguments (if any) are passed in registers R0 through R3, starting with R0. If there are more than four arguments, or if they are too large to fit in 32-bit registers, they are passed on the stack.
[bookmark: _Toc86679940]Temporary storage
Registers R0 through R3 can be used for temporary storage if they were not used for arguments, or if the argument value is no longer needed.
[bookmark: _Toc86679941]Preserved Registers
Registers R4 through R11 must be preserved by a subroutine. If any must be used, they must be saved first and restored before returning. This is typically done by pushing them to and popping them from the stack.
[bookmark: _Toc86679942]Returning from Functions
Because the return address has been stored in the LR, the BX lr instruction will reload the Program Counter (PC) with the return address value from the LR. If the function returns a value, it will be passed through register R0.
[bookmark: _Toc86679943]String Copy
The function my_strcpy has two arguments (src, dst). Each is a 32-bit long pointer to a character. In this case, a pointer fits into a register, so argument src is passed through register R0 and dst is passed through R1.
Our function will load a character from memory.
__asm void my_strcpy(const char *src, char *dst)
{
loop
 LDRB r2, [r0]		; Load byte into r2 from mem. pointed to by r0 (src pointer)
		ADDS	r0, #1		; Increment src pointer
 STRB r2, [r1]		; Store byte in r2 into memory pointed to by r1 (dst pointer)
		ADDS	r1, #1		; Increment dst pointer
 CMP r2, #0		; Was the byte 0?
 BNE loop			; If not, repeat the loop
 BX lr				; Else return from subroutine
}

[bookmark: _Toc86679944]String Capitalization
Let’s look at a subroutine to capitalize all the lowercase letters in the string. We need to load each character, check to see if it is a letter, and if so, capitalize it.
Each character in the string is represented with its ASCII code. For example, “A” is represented with a 65 (0x41), “B” with 66 (0x42), and so on up to “Z,” which uses 90 (0x5a). The lowercase letters start at “a” (97, or 0x61) and end with “z” (122, or 0x7a). We can convert a lowercase letter to an uppercase letter by subtracting 32.
__asm void my_capitalize(char *str)
{
cap_loop
 LDRB r1, [r0]		; Load byte into r1 from memory pointed to by r0 (str pointer)
		CMP	r1, #'a'-1	; compare it with the character before 'a'
		BLS	cap_skip		; If byte is lower or same, then skip this byte
	
		CMP	r1, #'z'		; Compare it with the 'z' character
		BHI	cap_skip		; If it is higher, then skip this byte
	
		SUBS	r1,#32		; Else subtract out difference to capitalize it
 STRB r1, [r0]		; Store the capitalized byte back in memory
cap_skip
		ADDS	r0, r0, #1	; Increment str pointer
		CMP r1, #0		; Was the byte 0?
 BNE cap_loop		; If not, repeat the loop
 BX lr				; Else return from subroutine
}
The code is shown above. It loads the byte into r1. If the byte is less than “a,” then the code skips the rest of the tests and proceeds to finish up the loop iteration.
This code has a quirk: the first compare instruction compares R1 against the character immediately before “a” in the table. Why? What we would like is to compare R1 against “a” and then branch if it is lower. However, there is no branch lower instruction, just branch lower or same (BLS). To use that instruction, we need to reduce by one the value we compare R1 against.

[bookmark: _Toc86679945]Lab Procedure
1. Import the project (File->Import->Existing Projects into Workspace->Select archive file).
a
a

a
b

a
c

a
e

a
d

Note: The project file supplied was done in Arm DS-5. You will need to import the existing DS-5 project files into Arm Development Studio.
When importing existing DS-5 projects into Arm Development Studio, you might get prompted to migrate the existing projects to the new Arm Development Studio for future compatibility. Select OK. For example, see the snapshot below:
[image: A picture containing text, screenshot, computer

Description automatically generated]

2. Run debugging and connect to Cortex-A9x4 FVP (Run->Debug Configurations, double click on IoT-Lib-Cortex-A9x4-FVP).
Note: If you experience an error at this stage, see the Troubleshooting section at the end of this document.
[image: Graphical user interface, text, application, email

Description automatically generated]

3. Run the program until the opening brace in the main function is highlighted. Open the Registers window (Window->Show View->Registers). What are the values of the stack pointer (SP), LR, and the PC? (See figure below.)

[image: Graphical user interface, application, table, Excel

Description automatically generated]Register values
Address
0x800001D8

SP = 0x800A4238, LR = 0x800001A1, PC = 0x800001D8
4. Open the Disassembly window (Window->Show View->Disassembly). Which instruction is highlighted, and what is its address? How does this address relate to the value of PC? (See picture above.)
“SUB sp, sp, #0x28” is at address 0x800001D8, which is the value of PC. This is the next instruction that will be executed.
5. Switch to “Step by Instruction” mode by clicking [image:] in the Debug Control window. Step one machine instruction using the F5 key while the Disassembly window is selected. Which two registers have changed (they should be highlighted in the Registers window), and how do they relate to the instruction just executed? (See picture below.)
[image: Graphical user interface, application, table, Excel

Description automatically generated]Stack pointer
Program counter

The SP has changed to 0x800A4210, resulting from subtracting 0x28 from 0x800A4238. The PC has changed to 0x800001DA, resulting from executing the subtract instruction (which is two bytes long).
6. Look at the instructions in the Disassembly window. Do you see any instructions that are four bytes long? If so, what are the first two? (See picture below.)
[image: Graphical user interface, text, application

Description automatically generated]Four bytes long instructions

Yes:
BL my_strcpy;
7. Continue execution (using F5) until reaching the BL my_strcpy instruction. What are the values of the SP, PC, and LR? (See picture below.)
[image: Graphical user interface, application, table, Excel

Description automatically generated]Arguments
Local variables

SP = 0x800A4210, LR = 0x800001A1, PC = 0x800001F0
8. Watch the Variables window (Window->Show View-> Variables) to analyze the variables “a” and “b” (see picture below). What is the value of “a”? What is the value of “b”?
The value of “a” is “Hello world!”; the value of “b” is null characters.
9. Which registers hold the arguments to my_strcpy, and what are their contents? (See picture above.)
src: register R0, value 0x800A4228, the address of variable “a”
dst: register R1, value 0x800A4214, the address of variable “b”
10. Use the Expressions window to watch the values in the address held in R0 and R1. Do the values match variables “a” and “b”? (See picture below.)
[image: Table

Description automatically generated]
The values match variables “a” and “b”.
11. Execute the BL instruction. What are the values of the SP, PC, and LR? What has changed and why? Does the PC value agree with what is shown in the Disassembly window? (See picture below.)
[image: Graphical user interface, text, application

Description automatically generated]Address of the
subroutine
Stack pointer
Link register
Program counter
R0: value of scr pointer
R1: value of dst pointer

SP = 0x800A4210, LR = 0x800001F5, PC = 0x800001B4. LR has changed because the BL instruction saved the return address (old value of PC + length of BL instruction + 1). PC has changed because the PC is loaded with the address of the subroutine to execute. Yes, the PC matches the Disassembly window contents: the highlighted instruction at 0x800001B4.
12. Single step through the assembly code watching the “Expressions” window to see the string being copied character by character from a to b. Which register holds the character?
R2
13. What are the values of the character, the src pointer, the dst pointer, the LR, and the PC when the code reaches the last instruction in the subroutine (BX lr)?

[image: Graphical user interface, application

Description automatically generated]
R2 = 0x00000000, src = R0 = 0x800A4235, dst = R1 = 0x800A4221, LR = 0x800001F5, PC = 0x800001C0
14. Execute the BX lr instruction. Now what is the value of the PC?

[image: Graphical user interface, application, table, Excel

Description automatically generated]
PC = 0x800001F4
15. What is the relationship between the PC value and the previous LR value? Explain.
PC is LR-1. The processor resumes executing code at address 0x800001F4, but the last bit of the PC is set to indicate the processor is executing in Thumb mode.
16. Now step through the my_capitalize subroutine and verify it works correctly, converting b from “Hello world!” to “HELLO WORLD!”.

[image: Graphical user interface, application

Description automatically generated]Characters are capitalized one by one from a to b

[bookmark: _Toc86679946]Troubleshooting
When debugging the program, you may experience a connection error as shown below:
[image: Graphical user interface, application, Word

Description automatically generated]

As a workaround, you can try the following steps:
1. Change Debug Cortex-A9MP_0 to Debug Cortex-A9MP_1 in Debug Configurations.

2. Go back to the old configurations and select Debug again.

3. The program should now start.
[image: A screenshot of a computer

Description automatically generated]

	Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Page 2
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image1.png

image2.png

