
Real Time Operating Systems Design and Programming
Lab 6
OS Debugging Lab
Tuning Performance

Contents
1	Overview	2
2	The project Setup	2
3	Lab Procedure	3

[image: https://community.arm.com/cfs-filesystemfile/__key/communityserver-components-secureimagefileviewer/communityserver-blogs-components-weblogfiles-00-00-00-19-93/ARM_5F00_Education_5F00_vertical_5F00_blue.png_2D00_1800x1012x2.png?_=636836670764988716]
[bookmark: _Hlk85463807]

[image:]

	

[bookmark: _Toc342220553][bookmark: _Toc89698069]Overview
Tuning a program to a good, if not optimal, state is a time-consuming task. In this lab, you are expected to improve the performance of the provided project. You will first be introduced to how to evaluate the performance of the provided project with various debugging tools and techniques. By doing so, you will notice performance or, in some cases, even functional bugs.
[bookmark: _Toc89698070]The project Setup
The project is based on RTX and you should not modify the configuration, but make sure the timer clock value is correct for your board. It applies prioritised Round-Robin task switching scheduling with timeout of 50μs.
There will be three types of tasks:
The init task creates all other tasks, the dispatcher task and all other LED tasks, and then deletes itself.
The dispatcher task will dispatch all other LEDs based on the priorities assigned (LED_priority), by raising LED’s RTX priority to 10.
The LED task will turn on an LED, do some computation (delay), turn off the LED, do some computation (delay), set its own priority to 1 and then pass the control to other tasks (dispatcher).
For a dispatch cycle, one LED task will run several times based on the priorities assigned if its LED_priority is 4, then it will be called 4 times in a cycle). All LED tasks will be called at least once during the cycle. However, different LED tasks take different time to finish, this reflects the preference of the program and is decided by LED_preference.
The program will stop when it finishes MAX_COUNT cycles (by default 100). So the target is to finish all cycles using least time by carefully choosing the priority strategy that meets the preference of the program.
The precise timing behaviour depends on the random number generator, which will be seeded by the ADC input. So please do not feel surprised by the slightly different results when you run the exact same program many times.
This setup is reasonably artificial and for demonstration purposes only.

[bookmark: _Toc89698071]Lab Procedure
1. Open the template project. Scan through the code. In particular the LED task and the dispatcher task.
2. Run the code and measure the time of LED activity with an oscilloscope. How long does it roughly take to finish everything? (From the first LED pulse to the last LED pulse.)
Around 0.3 seconds.
3. The end_time=os_time_get(); in the dispatcher task records the ending time in the unit of 10μs. You were introduced to the watch window and memory monitoring function in μVision debugger in previous labs. Recall that this is supported by the ARM CoreSight debugging technology (part of Cortex-M processors) and only global variables can be monitored in real time.
Now run the program in debugger mode and watch the end_time. Does that correspond to the result of Q2?
Yes, the value of end_time is around 30600, which means 0.3 seconds.
4. To what extent is this technique of measuring time intrusive?
Not very much in terms of timing, but the program has to explicitly record the time: end_time=os_time_get();
5. μVision also supports RTX and provides OS-aware debugging tools. In debug mode, click on the debug menu and select the System and Thread Viewer in OS Support. However the window will not response during debugging as you needs to activate and configure the Serial Wire Viewer (SWV). This is actually similar to the logic analyser and we have introduced how to setup and configure the SWV in previous lab. It enables the debugger to trace the CPU activity in real-time through the serial wire.
Configure the SWV if the project has not done this for you already. In particular, make sure that the Core clock is matched with your board.
[image: A screenshot of a computer

Description automatically generated with medium confidence]
[image: Graphical user interface, text, application, email

Description automatically generated]And the System and Thread Viewer looks like this:
[image: Graphical user interface, application

Description automatically generated]
The content is self-evident and you can monitor the states of tasks in real time. Please notice that at any given time, there will be only one Running task.
Try to give a simple example when the System and Thread Viewer can help in detecting deadlock situations.
Two or more tasks in WAIT_SEM while there is only the os_idle_demon always in Running state.
6. Now, try to repeat Q2 and Q3 with the System and Thread Viewer feature on, is it intrusive? Does the timing suffer from having this debug feature?
The effect is not obvious. The timing is still around 0.3s. So you can just assume it is non-intrusive. RTX will store related information in a memory area that is accessible by the debugger so that this feature can be enabled.
7. Another OS-aware debugging feature is the Event Viewer, (you could have noticed from Q5). Enable that in the debug mode, you will see the Event Viewer (much similar to the Logic Analyzer). Enable that debugging feature.
[image: A screenshot of a computer

Description automatically generated with medium confidence]
And the Event Viewer looks like this:
[image: A picture containing calendar

Description automatically generated]
You can see it provides a very clear view of what happened, including the transitions between tasks. The number next to the task name is its task ID (OS_TID). Similarly, you can see from the Event Viewer that at any given time, there will be only one task running.
The Event Viewer uses Instrumentation Trace Marcocell (ITM, part of CoreSight Debug technology) and is slightly intrusive, but should not be a problem for this lab. This feature may not be available on some boards.

[image: Calendar

Description automatically generated]

This snapshot captures the activity of the first cycle. Try to explain for whatever happened in time order. Does that correspond to the default LED_priority (4,3,2,1)?
Init was created at first. It then created the dispatcher. After that, it also four LED tasks. After that, it deleted itself and as the dispatcher has a priority of 9, it ran after init.
Then the dispatcher dispatched first LED task four times, the second LED task three times, the third LED task two times and the last LED task one time in turn. All other cycles follow the same sequence, but the timing maybe slightly different. This corresponds to the default LED_priority 4,3,2,1.

8. Notice that there are three additional features on the top right corner of the Event Viewer, enable them:
[image:]
Now if you stop the cursor on a task, it will show more related information, such as:
[image: Table

Description automatically generated]
You can also measure the time between two points (Delta in the task info window), and the time for that specific running slice.
The task information also includes call times (Called), which is really useful for optimisation. If a task runs more times than you expected, then there could be a problem. Also, in terms of improving the performance, you will be most interested in the task called by most times as improving them will have highest general effect. You can also calculate the execution time for each task by multiplying the call times and the average execution time. The minimum execution time and the maximum execution time are good indicators of the variability of the task as well.

Now run the program and wait until it finishes. Stop the debugger, record call times and calculate the execution times for all tasks and fill in the following table. Do the call times correspond to what you expected? Calculate the sum of execution times for all LED tasks. Assume the execution time of init and dispatcher is negligible - does it approximate to the answer you have for Q2 or Q3? Ideally, we would like to reduce the execution time of the most frequently evoked task, to best optimise the timing performance of our program.
	Task
	init
	Dispatcher
	LED1
	LED2
	LED3
	LED4

	Average Execution time(ms)
	0.4
	0.3
	0.2
	0.1

	Call Time
	1
	1001
	400
	300
	200
	100

It corresponds to the priority set up and the number of cycles executed. 0.4*400+0.3*300+0.2*200+0.1*100=300ms. Around 0.3s.

9. It is suggested that the os_tsk_prio_self(1); is not necessary within the LED task:
[image: Graphical user interface, text, application

Description automatically generated]

Since the following os_tsk_pass() can give up its current section to dispatcher. Is this true or not? Why?
It is not true, see Q10 for more details.
10. Try to run the program without the line that downgrades LED’s priority. What has happened? Try to explain Q9 based on the result.
Only one LED task will be constantly running or waiting. As it has the highest RTX priority (10, assigned by the dispatcher), any other tasks with lower RTX priority will not be considered by the scheduler even if the LED task executed os_tsk_pass();, the scheduler will dispatch the LED task after that.
Recall that high priority background tasks in RTX must be self-blocking. Downgrading own priority (os_tsk_prio_self) is a way to achieve this.
11. Come back to the code editing mode and in the main.c tab, put os_tsk_prio_self(1) back, and press F2 to see the bookmarked line of LED_priority. Try to change the sequence of the LED_priority array, for example, LED_priority[4]={4,1,2,3}; rearrange the sequence only. Run the program and check the end_time, is it faster?
Around 0.26s. So around 0.05s faster than the default setting. As a matter of fact, any other priority setting will improve the timing.
12. Is that the optimal priority setting? Try some other settings randomly, record the combinations you have tried and note the best priority setting among them.
1,4,2,3 around 0.23s
3,1,2,4 around 0.23s
3,4,2,1 around 0.29s
1,2,3,4 around 0.2s
Actually the optimal setting is 1,2,3,4.
13. At this point, you should be able to see the relation between your priority setting and the LED preference of the program. Try to explain how it works by either checking the code or moving on to the next step.
The LED task with highest LED preference runs longest. Try to avoid those and run more low LED preference task is a good idea.
14. Now modify the MAX_COUNT constant from 100 to 10000 (should take less than 1 minute to finish). Try the best setting you have from Q12 or Q13; how long does that take to finish the entire program?
For example, if the best setting you get from Q12 is 1,4,2,3, then the end time is around 24s.
15. Enable the random coefficient generator by setting COEFFICIENT_RAM_GEN to 1. Rerun the program several times with the same setting as you did in Q14 and record the end_time; are they the same or similar? Is your setting still a suitable option with a random generated program preference?
End_time varies between 20s and 30s. Check the LED_preference through the watch window, you will be able to predict if your setting will perform well or not in that specific run. In most cases, it takes more than 23 seconds to finish, which means this is probably a less good option to tackle the unpredictable preference problem.
16. Now disable the random coefficient generator and enable the ML, which is an adapter algorithm that can help the dispatcher to learn about the preference and dynamically adjust the led priority to the optimal level. You need not concern yourself with the detail of how it works during this lab. Now run the program and monitor the LED_priority array through the watch window. What is the final result of the LED_priority and end_time?
The learned outcome is {1,2,3,4}, in some cases, may be {1,2,4,3}. End_time is around 22seconds.
17. Now disable the ML and statically assign the learned priority value from Q16 to LED_priority, and rerun the program. Does that improve timing?
It takes around 21 seconds to finish. So the ML program is around 1 second slower than the optimal case. The ML algorithm tries to identify the best priority setting at the expanse of some timing performance.
18. Enable both ML and coefficient generator and rerun the program for several times. Check if the performance is consistently close to optimal.
Yes, the end_time is usually around 22 seconds. This may not be the optimal result, but it can deal with the random situation with a satisfactory performance.
19. (Optional) If your colleague finds that the called times for a LED task is unexpectedly high (for example, should be 600, but actually 834), what would you suggest to help investigate the problem?
Use the Event Viewer to zoom in the timing behaviour of that task, and pay attention to the transitions from that task to other tasks or from other tasks to that task.
20. (Optional) Your colleague decides to investigate the problem through the Event Viewer and here are two snapshots of what happened:
[image: Chart

Description automatically generated with medium confidence]
[image: Calendar

Description automatically generated with low confidence]
What would you suggest to tackle the problem?
It seems that task LED 6 is being constantly interrupted by other LED tasks and then resumes its own execution. It may be a good idea to start from investigating what causes these transitions; most likely an incorrect way of giving up execution or wrong priority adjustment.

image3.png
W H9- Lab Manual-Tu ma ity c 0 = @ % Kk} C\Users\ranguall\Desktop\OS\LiB\OS-STM32FAD-LiB\ Contents\Module_13\Tuning Performance\Solution-Tuning Performance\ Template.uvprojx - pVision =)
Wome | Inset Pagelayout References Mailngs Review View o @ Fie Edt View Project Flash Peripherals _Tools SVCS_ Window _ Help
o A o | Aae | B s T N P~ Sdd | @] strtsiop Debug sesson curs | @ checkpoint EEYS
CalibriBody) ~ 110 - A" A7 | Aa- | % Y (Al =~ E-0E How AaBbCcDl AaBbCCDC AaBDCCDX | AsBCCDA: | AsBbCCDE AaBbCcDdl AABBCCI AABBCCI AABBCCI AABBCC 4aBbCeodt | 2 Repioce) [|25 roaco m-|
e BIU-sexx i ¥-A-NSE S+ MUSec. WSl Wode MpCode.. | THomsl | Soion NoSpadng Aesdngl Headnp2 Headngd Hesdngd THe Subie Subtefn. Chonse E B = o lme Oof 2o
EREorat Part=r o= "l styles~ | K selet | fRagicgars o = B [E System and Thread Viewer @
Cipboara 8 Font 3 Paragraph 3 styes 2| diting - Ol = T 2 propery Ve
= [Regster op
Nevigation v X 1. Open the template project. Scan through the code. Particularly the LED tasks, the arbiter task and the &5 cos e - IDR RO, =Systemlnic & System frem T e
D |zr zo,tpe,#sel s gowosocopoc
B : B R 000000000 mer Namber:
vision x examiner task " il | o sx mo Timer Numby o
e pra— 2. Run the code and measure the time of LED activity. How long does it roughly take to finish everything? g GO0 | (5 step 0wt P o Tick Timen 1000 mSec
continue your search Use a oscilloscope. oy L oo foon B RO e Round Robin Timeout: 10000 mSec
0 =] a R4 000000000 “ “ D Stack Size: 208
FEIE A RS 00000000 | | Show Next Statement Tasks with U ided Stack: 0
Around 9.5 seconds. b 500000000 lm; RTX_Conf_CM.c v x o cPh & o
You can search "7 000000000 Breakpoints. cues T - tack Overflow Che e
fortert inyour 3. The end_time=os_time_get(); in the arbiter task records the ending time in the unit of 1ms. You were R8 00000000 | @ nsertRemove Breakpoint o Tosk Usage Available: 10, Used: 0
typing in the introduced to the watch window and memory monitoring function in pVision debugger in previous labs. ',:?u mssssss Enable/Disable Breakpoint Ci-re fer User Timers: Available: 0, Used: 0
Searen box Recall that this is supported by the ARM CoreSight debugging technology (part of Cortex-M processors) 1t 00000000 | (5 Disable Al Breakpoints Reset Handler e i =
B and only global variable can be monitored in real time. R12 00000000 Kill Al Breakpoints Curtshift-Fo SystemIniz
Cldkthe X Faen oo & soten 255 | osidle_demon 0 Running
S RI(R) CFFFFFFF
cancelyour Now run the program in debugger mode and watch the end_time. Does that correspond to the result of Teen oo (V] system anahreaa viewsr | .
2 e foisteosin Execution profiing »| Eventviewer
B Banked Memory Map. RO,
Yes, the value of end_time is around 9500, which means 9.5 seconds. o oen P RO
Vode Thresd Function Editor (Open ni Fitl
4. Towhat extent, isthis technique of measuring time intrusive? Prviege Pruleged iom Handlers (infimie loops which can be medified)
Stack s Debug Settings.
Not very much in terms of timing, but the program has to explicitly record the time: States 2677043274 18T
" " Sec 15.93478139 184 NMI_Handler [WERK]
end_time=os_time_getl) e FpU e -
1e6
5. wVision also supports RTX and provides OS-aware debugging tools. In debug mode, click on the debug 167 HardFault Handler\
menu and select the System and Thread Viewer in OS Support. a6
169 HardFaulc Handler (WEAK]
130
191
152 MemdManage Handler\
Blue LED and green LED are flashing. The j will sometimes be incremented by the producer or be 193
194 Memanage Handler (W] -
decremented by the consumer depending on the random time delay. If is above zero, then G e D
consumer_datum will copy the previous value of producer_datum, otherwise its value is unpredictable as Erroject | Bregisters Text Editor {_Configuraton Wizerd
itis reading from another part inthe memory (buffer underflow). It s also possible that buffer overflow T e T '8
oceur (in the very long run, or the delay time for extract and consume is longer] if i grows larger than 9. As Running with Code Size Limit: 52K = Name Value Type
producer is writing to the memory, either buffer underflow or buffer overflow will contaminate memory Load "C:\\Users\\rangua01\\Desktop\\OS\\LiB\\05-STM32F4D-LiB\\Contents\\ ¢ end_time 9462 =
space, which could eventually trigger the error handler. e+ Restricted Version with 32768 Byce Code Size Limit <Enter expression>
«es Currently used: 8260 Byces (273)
6. An alternative way to examine the problem is to use the logic analyzer. Logic analyzer from wVision can
WS 1, “end_ctime,Ox0a
sample the value of specific memory location and plot the value so that everything can be represented in .
avisual and potentially more intuitive way. Do the following to configure the logic analyzer if the template
project has not done this for you. 3
2 A
Exit debug mode first if you are debugging. Select Target Options “*~_or ALT-F, In the Debug tap, click P —— v
Page: 2017 | Wordsi2039 | <5 _Engiish (U) | 0@ >
T~ = ‘ ‘ ‘ ‘ & ‘ 2SSIGN BreakDissble BreakEnsble BreakKill BreakList BreakSet Breakhccess | i CallStack - Locals | Waten1 [Eemon 1

image4.png
Cortex-M Target Driver Setup

Debg T | s Dowriad |
Core Clock: | 168.000000 MHz ¥ Trace Enable
Trce ot - Tz

[Serl Vire Ot UARTAVRZ o] | | 7 Enable Proscaler:[1 <]

I CPI: Cycles per Instruction
SWO Clock Prescaer. [82

I EXC: Exception overhead
-PC Samping——————————

I SLEEP: Sieep Cycles.
¥ Atodetect Prescaer (102476 1 | | = 50 Long Sore Ut
SWO Clock: [2000000 Mz | | peeic Perod:[<Braieds | | I FOLD: €
™ on Data R/W Sample I EXCTRC: Bxcepton Tracng
[-ITM Stmuus Pors

Pot 26023 Pot 1615 Pt 8 7 FPot 0
Enable: [BFFFFFFFF rrrrrrrrwwwwrrrrrrrrwwwwrrrrrrrrwwwwrrrrrrrrwwww

Piiviege: [300000008 Pot312¢ [Pon23.16 [~

-Advanced setings

Pot15.8 [~ Pot7.0 [~

™ lgnore packets wih no SYNC
I~ Overwite CYCCNT

oK Cancel Apply

image5.png
) Tasks

Timer Number:

e tome
[f

s o
e

oo e

e e i s
e e s

Priority

image6.png
k4’ C:\Users\rangua01\Desktop\OS\LiB\OS-STM32F4D-LiB\Contents\Module 13\Tuning Performance\Solution-Tuning Performance\ Template.uvprojx - uVision

E=fobEsw E9- 0|

Lab Manual-Tuning Performance [Compatibility Mode] - Microsoft Word = & =
File Edt View Project Flash Peripherals Tools SVCS Window _ Help Home | Inset Pagelayout References Maiings Review View B
"SH@| s @ Start/top Debug Session cuiss ! U | @ eneckpoint EEY (oX] % o oA A | Aae | B s [A] Ap darina-

~ Caliori@ody) 710 v AT AT | Aan |) T AaBbCCDAl A2BBCCDC AaBbCCD(AaBbCeDd! | AaBHCEDC | AaBbCEDAE AABBCCI AABBCCI AABBCCI AABBCC 4asbccodl
EAIEN) o Reset U -@-E-| % & - &, Replace
< D e e ool = %
Paste o otpanter | B 2 U 7 abe X, MCUSpec.. MyBulet MyCode MyCode.. Thomal | Solution |NoSpacng Headingl Heading2 Headingd Heodingd THe Subtie Subtiefm.. - Change F_
Registers — = 3 @ Event viewer a@ - Fomathanter Stytes~ | R sele
= = - |) e e 2 S i Ciipboard 5 Font 5 Paragraph 5 § § stes 2| _ang |
== Bave| Os [0.595238us [19ms |[Tn][out[AT] [Stop][Clear] |[Code]Trace] [Prev]Next] I show Cydes &
Core © st F1 //Generate the award cosfficient vector for all conditions =
0 step Over Fo [BUSE o (mersamo The content is self-evident and you can monitor the states of tasks in real time. Please notice that at any
vUsH. 64 tds-ds}
@ stepout aerr 205 given time, there will be only one Running task.
1} Run to Cursor Line ctspi [remerm ~r anene
R 00000000 v
& Show Next Statement Try to give a simple example when the System and Thread Viewer can help in detecting deadlock
RS 00000000 situations.
s 5:00000000 Breakpoints. [
R8 CO00000 | @ Insert/Remove Breakpoint F ner=os_tsk _create (Isk_Examiner,
b 5100000000 o s e e Rt Two or more tasks in WAIT_SEM while there is only the os_idle_demon always in Running state.
RI1 x00000000 | (5 Disable All Breakpoints ite_self (); // Delete the init(self) task Now, try to repeat Q2 and Q3 with the System and Thread Viewer, isit intrusive? Does the timing suffer
@ il AllBreakpoints Ctr-shift-Fo from having this debug feature?
@ The effect is not obvious. The timing is stll around 9.55. S0 you can just assume it is non-intrusive. RTX will
sccution Profiing
store related information in a memory area that is accessible by the debugger so that this feature canbe
Barked r—— < the award coefficient vector for all conditions
Sytem R enabled.
£ temal Inline Assemby
Hode Thead Funtion Editor Open ni Fie) ;
Piviege Pivieged 4
Stack sp Debug Settings. . -
States 18309 Fward coetficient[0 * (R+G+3+0) 5 // - o
Sec 000010898 - L | Ll
il avard_coefficient (6+8+0) 5/ /R System and Thread Viewer 2@
avard_coefficient(2] (R+3+0);//G Property Value
avard_coefficient(4 (R+G+0);//5 =
swara cossricient (o (R+G+5)1//0 | & system = =N
Timer Number: o
avard_coefficient(s *(8+0) ://36 Tick Timer: 1000 msec
award_coefficient 7 (6+0)://3R Round Robin Timeout: 10,000 mSec
avard_coefficient(s *(R+0) ;//36 g
avard coefficient *(G+B) 1/ /OR, = Stack Size: 2048
[rroject | S Registers i v Tasks with User-provided Stack: o
Command e T '8 Stack Overflow Check: Yes
Task Usage: Available: 10, Usedt 0
Running with Code Size Limit: 52K <[Nome Value Type X
e AT Fon a0t D oap\\OS\\LBA\ 05 STHZE4D-L1BA\ Contenta\y . e User Timers Available 0, Used: 0 7. Another OS-aware debugging feature is the Event Viewer, (you could have noticed from Q).
v+ Restricted Version with 32768 Byve Code Size Limit <Enter expression> Tasks Mome o Prio =5 B e Ve Eveny bz e Tear
o Carrenciy usd: 5960 Byves (27%) @ | P mre ey [Eeie ot i |
WS 1, “end_time,Ox0n
- 8. Some suggested that the access to buffer should be made mutually exclusive. Does that work and how?
Try to implement this idea and see if it solves the problem, explain why or why not. You may refer to the
slides on how to use the mutex primitive in RTX.
. = See the solution project for the codes.
‘ i v
> Implementing only the mutex has o positive effect at all. The consumer canstill extract a datum from an 3
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet Breakhccess | GaCallsadk - Lowls | Watch1 [EMemors 1 empty buffer. Things could get worst if buffer underflow contaminate mutex related information. For
e E e e] SOTTNEE WEE 5 Y ST @ 0 example, if your producer can no longer release the mutex, itis probably due to the underflow °
© o/ aje[al & w]Ey ST Mo vomioe 5 s | —

image7.png
]| MnTme MaxTme Gid | Zoom | pdatesaeen | dmpto
-] [[95.66667us | 0.304285s .2ms |[1n |[Out|[Al | [Stop][Clear] [Code [Trace]

e e e o

Transiton |~ Taskinfo | Cusor
[Prev][Next] = show cydes

02422255 02434255 0743957 5] 02448255

image8.png
it (1)

it (1)

dsigysL ITISL AL a3 AT L Igge)

image9.png
W Taskinfo ¥ Cursor
¥ Show Cydes.

image10.png
A
|

init 1)
008000514)

Min/Mac

Time:

Begin
9550595 us

Min
9550595 us

Mouse Pos.
0.231506 ms

End
0371744 ms.

Max
0.276238 ms.

Reference Point
71.04308 ms

Delta
0276238 ms.

Average
0276238 ms.

Detta
0.070812's.

Elapsed
0.276238 ms|

Called.

14121986 Hz

image11.png
|__task void Tsk LED(void *colour){

Gpio_set_mode (LED[(* (int *)celour)],Output);
| waile(Dt
//Turn on the LED
Gpio_set (LED[(*(int *)colour)],1);
/Do some computation
Delay((int) ((rand() § RDIV*RAMT + RMIN))* (LED_preference[(*(int *)colour)]));
//Tuzrn off the LED
Gpio_set (LED[(*(int *)colour)],0);
/Do some computation
Delay((int) ((rand() § RDIVRAMT + RMIN))* (LED_preference[(*(int *)colour)]));
//Readusust self priority
os_tsk_prio_self(1):
//Give up carrent comtrel section
os_tsk_pass();

image12.png

image13.png
Tk LED (4)

Tsk_LED (5)

Tsk_LED (6)

Tsk_LED ()

image1.png
//§h ﬁ/] \\?\\ j/
= RN / 0
o J EOIUC @ 1©°

image2.png
Fducation

