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[bookmark: _Toc83817548]Introduction
[bookmark: _Toc83817549]Lab overview
In the previous labs, assembly language was used to program the SoC at low-level, which gave better control over the hardware and helped us understand the hardware mechanism at register transfer level (RTL).
In this lab, C language will be used to program the SoC at a higher level, whereby compilers, software libraries, and tools can be used to hide the complexity of low-level management. This means that we can make more complicated applications in a more efficient way.
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One can always mix C and assembly code in one project, or even in one file.
Hardware implementation has been completed in the previous labs; the following labs will focus on software. The work in this lab includes:
[bookmark: _Toc83817550]Software programming:
· Program the Cortex-M0 processor and control the peripherals using C language.
[bookmark: _Toc83817551]Demonstrate the SoC:
· Use the timer interrupt to implement a counting up counter (counting from 0 to 9) and display the value to the VGA display (same as previous lab but using C programming).
· Use the UART interrupt to send characters to a PC or laptop (same as previous lab but using C programming).
· Input from 8-bit switch and output to LEDs

[bookmark: _Toc5031133][bookmark: _Toc83817552]Learning Objectives
· Implement a timer interrupt handler and UART interrupt handler in a high-level language such as C. 
· Modify a C program to enable the timer and UART interrupts.  
· Modify a C program to set the interrupt priority of the timer and UART interrupts.  
· Modify a C program to initialise the timer to generate an interrupt at regular interval.  

[bookmark: _Toc83817553]Requirements
This lab requires the following hardware and software: 
· Hardware:
· Diligent BASYS 3 FPGA board connected to computer via MicroUSB cable. A constraints file for this board is also provided.
· VGA-compliant monitor and VGA cable to connect your board
· Software
· Xilinx Vivado
· Keil uVision 
· TeraTerm
[bookmark: _Toc83420958][bookmark: _Toc83424613][bookmark: _Toc83817554]Provided files
You will need the files from the previous labs along with the following files which are provided with this Lab:

	File name
	Description

	cm0dsasm.s
	The assembly file that includes interrupt vectors and part of the interrupt service routines

	main.c
	The C code that contains the main program and part of the interrupt service routines





[bookmark: _Toc83817555]Software
[bookmark: _Toc83817556]Program procedure
The assembly code in cm0dsasm.s should perform the following:
· Initialize the interrupt vector.
· Define heap and stacks.
· Reset handler.
· Branch to the main code in main.c.
· Timer handler
· Push registers (e.g., R1 – R4) to the stack.
· Branch to the timer interrupt service routine in main.c.
· Pop registers from the stack.
· UART handler
· Push registers (e.g., R1 – R4) to the stack.
· Branch to the UART interrupt service routine in main.c.
· Pop registers from the stack.
The C code in main.c should perform the following:
· Main program
· Set the timer interrupt priority to 0x00 (higher).
· Set the UART interrupt priority to 0x40 (lower).
· Enable interrupts for the timer and UART.
· Reset the 7-segment display.
· Initialize the timer to generate an interrupt every second.
· Write the load value register, e.g., 50,000,000.
· Set prescaler, e.g., 1x or 16x.
· Change the operation mode to load mode.
· Start the timer.
· Repeat the following:
· Change the GPIO to read mode.
· Read from the switches using the GPIO.
· Change the GPIO to write mode.
· Write to the LEDs.
· Timer interrupt handler
· Clear the timer interrupt request.
· Increment the counter.
· Display the counter to the VGA text region.
· Disable the timer interrupt if the counter reaches 9.
· UART interrupt handler
· Read from the UART (from the keyboard).
· Write to the UART (to the terminal window).
[bookmark: _Toc83817557]An example of the demo:
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Figure 1:VGA Demo

[bookmark: _Toc83817558]Extension work
[bookmark: _Cannot_see_IDCODE][bookmark: _Toc79049890][bookmark: _Toc83817559]Extra tasks for this lab:
· Optimize the code in both operational speed and code density. You can use:
· Embedded assembly code in C code
· Embedded C code in assembly code
· Evaluate the coding efficiency between handwritten assembly code and assembly generated by the compiler.
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