




[bookmark: _Hlk5118283]

Intro to System-on-Chip Design Course
LAB 9
Programming an SoC using C Language
Issue 1.0




Contents
1	Introduction	1
1.1	Lab overview	1
1.1.1	Software programming:	1
1.1.2	Demonstrate the SoC:	1
2	Learning Objectives	1
3	Requirements	2
4	Provided files	2
5	Software	3
5.1	Program procedure	3
5.2	An example of the demo:	4
6	Extension work	4
6.1	Extra tasks for this lab:	4

[image: https://community.arm.com/cfs-filesystemfile/__key/communityserver-components-secureimagefileviewer/communityserver-blogs-components-weblogfiles-00-00-00-19-93/ARM_5F00_Education_5F00_vertical_5F00_blue.png_2D00_1800x1012x2.png?_=636836670764988716]



[image: ]





	

[bookmark: _Toc83817548]Introduction
[bookmark: _Toc83817549]Lab overview
In the previous labs, assembly language was used to program the SoC at low-level, which gave better control over the hardware and helped us understand the hardware mechanism at register transfer level (RTL).
In this lab, C language will be used to program the SoC at a higher level, whereby compilers, software libraries, and tools can be used to hide the complexity of low-level management. This means that we can make more complicated applications in a more efficient way.
[image: Graphical user interface

Description automatically generated with medium confidence]

One can always mix C and assembly code in one project, or even in one file.
Hardware implementation has been completed in the previous labs; the following labs will focus on software. The work in this lab includes:
[bookmark: _Toc83817550]Software programming:
· Program the Cortex-M0 processor and control the peripherals using C language.
[bookmark: _Toc83817551]Demonstrate the SoC:
· Use the timer interrupt to implement a counting up counter (counting from 0 to 9) and display the value to the VGA display (same as previous lab but using C programming).
· Use the UART interrupt to send characters to a PC or laptop (same as previous lab but using C programming).
· Input from 8-bit switch and output to LEDs

[bookmark: _Toc5031133][bookmark: _Toc83817552]Learning Objectives
· Implement a timer interrupt handler and UART interrupt handler in a high-level language such as C. 
· Modify a C program to enable the timer and UART interrupts.  
· Modify a C program to set the interrupt priority of the timer and UART interrupts.  
· Modify a C program to initialise the timer to generate an interrupt at regular interval.  

[bookmark: _Toc83817553]Requirements
This lab requires the following hardware and software: 
· Hardware:
· Diligent BASYS 3 FPGA board connected to computer via MicroUSB cable. A constraints file for this board is also provided.
· VGA-compliant monitor and VGA cable to connect your board
· Software
· Xilinx Vivado
· Keil uVision 
· TeraTerm
[bookmark: _Toc83420958][bookmark: _Toc83424613][bookmark: _Toc83817554]Provided files
You will need the files from the previous labs along with the following files which are provided with this Lab:

	File name
	Description

	cm0dsasm.s
	The assembly file that includes interrupt vectors and part of the interrupt service routines

	main.c
	The C code that contains the main program and part of the interrupt service routines





[bookmark: _Toc83817555]Software
[bookmark: _Toc83817556]Program procedure
The assembly code in cm0dsasm.s should perform the following:
· Initialize the interrupt vector.
· Define heap and stacks.
· Reset handler.
· Branch to the main code in main.c.
· Timer handler
· Push registers (e.g., R1 – R4) to the stack.
· Branch to the timer interrupt service routine in main.c.
· Pop registers from the stack.
· UART handler
· Push registers (e.g., R1 – R4) to the stack.
· Branch to the UART interrupt service routine in main.c.
· Pop registers from the stack.
The C code in main.c should perform the following:
· Main program
· Set the timer interrupt priority to 0x00 (higher).
· Set the UART interrupt priority to 0x40 (lower).
· Enable interrupts for the timer and UART.
· Reset the 7-segment display.
· Initialize the timer to generate an interrupt every second.
· Write the load value register, e.g., 50,000,000.
· Set prescaler, e.g., 1x or 16x.
· Change the operation mode to load mode.
· Start the timer.
· Repeat the following:
· Change the GPIO to read mode.
· Read from the switches using the GPIO.
· Change the GPIO to write mode.
· Write to the LEDs.
· Timer interrupt handler
· Clear the timer interrupt request.
· Increment the counter.
· Display the counter to the VGA text region.
· Disable the timer interrupt if the counter reaches 9.
· UART interrupt handler
· Read from the UART (from the keyboard).
· Write to the UART (to the terminal window).
[bookmark: _Toc83817557]An example of the demo:
[image: A screenshot of a computer

Description automatically generated with medium confidence]
Figure 1:VGA Demo

[bookmark: _Toc83817558]Extension work
[bookmark: _Cannot_see_IDCODE][bookmark: _Toc79049890][bookmark: _Toc83817559]Extra tasks for this lab:
· Optimize the code in both operational speed and code density. You can use:
· Embedded assembly code in C code
· Embedded C code in assembly code
· Evaluate the coding efficiency between handwritten assembly code and assembly generated by the compiler.

	Copyright © 2021 Arm Limited (or its affiliates). All rights reserved. 
Page 2
image3.png
Timer GPIO 7-Segment
Peripheral Peripheral Peripheral

N VGA UART
i Peripheral Peripheral

Arm Cortex-MO
Processor

Hardware design

|




image4.png




image2.png
Fducation




image1.png
//§h ﬁ/] \\?\\ j/
= RN / 0
o J EOIUC @ 1©°




