

[bookmark: _Hlk5118283]

Intro to SoC Design Course
LAB 11
API and Final Application
Issue 1.0

Contents
1	Introduction	1
1.1	Lab overview	1
1.1.1	Software programming:	1
1.1.2	Demonstrate the SoC:	1
2	Learning Objectives	1
3	Requirements	2
4	Provided files	2
5	Software	3
5.1	API Development	3
5.1.1	Create API file	3
5.1.2	Add the retarget file	3
5.1.3	File structure	4
5.2	Application development	5
5.2.1	Application using polling	5
5.2.2	Application using interrupt (power saving)	5
5.2.3	Example of the demo:	6
6	Extension work	6
6.1	Extra tasks for this lab:	6

[image: https://community.arm.com/cfs-filesystemfile/__key/communityserver-components-secureimagefileviewer/communityserver-blogs-components-weblogfiles-00-00-00-19-93/ARM_5F00_Education_5F00_vertical_5F00_blue.png_2D00_1800x1012x2.png?_=636836670764988716]

[image:]

	

[bookmark: _Toc83817623]Introduction
[bookmark: _Toc83817624]Lab overview
In previous labs, we used the CMSIS and developed drivers for the peripherals. In this lab, we will develop an API that has more generic and easy-to-use functions. Then, based on the API, we will develop a final game application: Snake.
The work in this lab includes:
[bookmark: _Toc83817625]Software programming:
· Using the functions provided by software drivers and CMSIS, develop an API that provides more generic and easy-to-use functions for application development.
[bookmark: _Toc83817626]Demonstrate the SoC:
· Develop a final application (such as the Snake game) to demonstrate the SoC
· Use sleep mode to reduce the power consumption of your application

[image: Diagram

Description automatically generated]
Figure 1: API and Application Development hierarchy
[bookmark: _Toc5031133][bookmark: _Toc83817627]Learning Objectives
· Modify reusable and easy to use APIs.
· Develop a single player snake game using C program which implements UART and timer interrupt handlers to control and display/ detect the snake’s coordinates.

[bookmark: _Toc83431647][bookmark: _Toc83599030][bookmark: _Toc83817628]Requirements
This lab requires the following hardware and software:
· Hardware:
· Diligent BASYS 3 FPGA board connected to computer via MicroUSB cable. A constraints file for this board is also provided.
· VGA-compliant monitor and VGA cable to connect your board
· Software
· Xilinx Vivado
· Keil uVision
· TeraTerm
[bookmark: _Toc83420958][bookmark: _Toc83424613][bookmark: _Toc83431648][bookmark: _Toc83599031][bookmark: _Toc83817629]Provided files
You will need the files from the previous labs along with the following files which are provided with this Lab:
	File name
	Description

	core_cm0.h
	CMSIS Cortex-M0 core peripheral access layer header file

	core_cmFunc.h
	CMSIS Cortex-M core function access header file

	core_cmInstr.h
	CMSIS Cortex-M core instruction access header file

	cm0dsasm.s
	Includes interrupt vectors and other setup assembly code

	main.c
	Includes the main program and interrupt service routines

	EDK_CM0
	Defines the interrupt numbers and memory map etc.

[bookmark: _Toc83817630]Software
[bookmark: _Toc83817631]API Development
[bookmark: _Toc83817632]Create API file
Under the “Device” folder, create a head file called “API.h” and a C file called “API.c”.
Write the functions in “API.c” and include all the function calls in “API.h”.
Suggested functions are as follows:
	API Functions
	Description

	void SoC_init(void)
	SoC initialization

	void rectangle(int x1,int y1,int x2,int y2, int color)
	Draw a rectangle on the screen.

	void clear_screen (void)
	Clean up the screen.

	int read_switch
	Read the value of the 8-bit switches.

	write_LED
	Write a value to the 8-bit LEDs.

	void Display_Int_Times (void)
	Display the number of interrupts that occurred using the 7-segment display.

	void delay(int value)
	Software delay program

	char random (char min, char max)
	A simple random generator based on system tick

[bookmark: _Toc83817633]Add the retarget file
The retarget file allows us to use print library functions such as “printf()”. To add the retarget file:
· Add the “retarget.c” file to the “Device” folder.
· Implement the retarget functions, for example:
	Retarget Functions
	Description

	int KBHIT(void)
	Wait for keyboard hit.

	int fputc(int ch, FILE *f)
	Input characters

	int fgetc(FILE *f)
	Output characters

	unsigned char VGAPutc(unsigned char my_ch)
	Output characters to VGA

	unsigned char UartPutc(unsigned char my_ch)
	Output characters to UART

	unsigned char UartGetc(void)
	Input characters from UART

Example code:
//define UartPutc
unsigned char UartPutc(unsigned char my_ch)
{
	UART->DATA=my_ch;
 return (my_ch);
}
//define fputc
int fputc(int ch, FILE *f) {
 return (UARTPutc(ch));
}
//use printf in main.c
printf("HelloWorld");

[bookmark: _Toc83817634]File structure
The files can be organized as follows:
Core folder
Device folder
Application folder
core_cm0.h
cm0dsasm.s
main.c
core_cmFunc.h
core_cmInstr.h
EDK_CM0.h
edk_driver.c
edk_driver.h
edk_api.c
edk_api.h
retarget.c

[bookmark: _Toc83817635]Application development
The following ideas can be used to program the Snake game:
[bookmark: _Toc83817636]Application using polling
· [image: Diagram

Description automatically generated]Main program
· Initialize the SoC.
· Initialize the game.
· Repeat the following:
· Check if keyboard hits; if yes, then,
· Update snake direction.
· Move the snake.
· Check if it hits the wall; if yes, then,
· Game over
· Delay for a short time.

[bookmark: _Toc83817637]Application using interrupt (power saving)
· Main program
· Initialize the SoC.
· Initialize the game.
· Enter the sleep-on-exit mode.
· Timer interrupt handler
· Trigger the snake to move one step.
· Detect if the target is reached or if the snake hits the wall.
· UART interrupt handler
· Input the command from the keyboard.
· Change the direction of the snake.
 [image: Diagram

Description automatically generated]
Interrupt-driven Mode

[bookmark: _Toc83817638]Example of the demo:
[image: A picture containing text, monitor, electronics, screen

Description automatically generated]
Demo Example
[bookmark: _Cannot_see_IDCODE][bookmark: _Toc83817639]Extension work
[bookmark: _Toc79049890][bookmark: _Toc81307353][bookmark: _Toc83817640]Extra tasks for this lab:
· Use a sampling energy meter (or other equipment) to measure the run-time power consumption of your game application.
· Optimize your code to reduce power consumption.
· Explore other games, such as TERIS, PACMAN, BREAK, TICTAC, etc.
	Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Page 2
image3.png

image4.png

image5.png

image6.png

image2.png

image1.png

