
[bookmark: _Hlk23944236][bookmark: _Toc27085727][bookmark: _Toc30051431]



[bookmark: _Hlk5118283]

Introduction to Robotic Systems Course
LAB 1
Programming with Mixed C and Assembly: 
Processing Text in Assembly Language



[bookmark: _GoBack]

Contents
1	Introduction	1
1.1	Lab Overview	1
2	Requirements	1
3	Mixing Assembly Language and C Code	1
4	Register Use Conventions	1
4.1	Calling Functions and Passing Arguments	2
4.2	Temporary Storage	2
4.3	Preserved Registers	2
4.4	Returning from Functions	2
5	Task: Copy and Capitalize String	2
5.1	Main Function	2
5.2	String Copy	3
5.3	String Capitalization	3
6	Lab Procedure	4

[image: https://community.arm.com/cfs-filesystemfile/__key/communityserver-components-secureimagefileviewer/communityserver-blogs-components-weblogfiles-00-00-00-19-93/ARM_5F00_Education_5F00_vertical_5F00_blue.png_2D00_1800x1012x2.png?_=636836670764988716]



[image: ]





	

[bookmark: _Toc31036564][bookmark: _Hlk27085594]Introduction
[bookmark: _Toc31036565]Lab Overview
This lab exercise presents an example code to introduce the concepts of mixed C and assembly code for modular code development. The example code presented performs two main actions. First, using pointers to address memory locations, it copies a string from a source to a destination memory location. Second, it capitalizes the copied string in the destination memory location. It achieves this by calling two subroutines written in assembly (string copy and string capitalization) in the main function.
[bookmark: _Toc5031133][bookmark: _Toc31036566]Requirements
The following hardware and software are required to complete this lab:
· Hardware: OpenCR1.0 Microcontroller Board and ULINK-ME debugger
· Software: Keil MDK. Version v5.28 was used when this course was developed.
[bookmark: _Toc31036567]Mixing Assembly Language and C Code
Embedded systems code can be written purely in assembly language; however, most are written in C, and a programmer may resort to assembly language only for time-critical processing.
Code development process is much faster (and hence much less expensive) when writing in C compared to when writing in assembly language. 
Writing an assembly language function that can be called in a C function results in a modular program that gives the best of both worlds: fast modular development in C and fast performance of assembly language.
It is also possible to add inline assembly code to C code, but this requires much greater knowledge of how the compiler generates code.
[bookmark: _Toc31036568]Register Use Conventions
There are register use conventions that, when followed, allow assembly code to coexist with C code in the same program. More on this in the lecture module “C as implemented in Assembly Language.” The following points are worth noting.
[bookmark: _Toc31036569]Calling Functions and Passing Arguments
When a function calls a subroutine, it places the return address in the link register lr. The arguments (if any) are passed in registers r0 through r3, starting with r0. If there are more than four arguments, or they are too large to fit in 32-bit registers, they are passed on the stack.
[bookmark: _Toc31036570]Temporary Storage
Registers r0 through r3 can be used for temporary storage if not used to hold input arguments, or if the argument value is no longer needed.
[bookmark: _Toc31036571]Preserved Registers
Registers r4 through r11 must be preserved by a subroutine. If any must be used, they must be saved first and restored before returning. This is typically done by pushing them to and popping them from the stack.
[bookmark: _Toc31036572]Returning from Functions
Since the link register holds the return address of a function, the instruction BX lr will reload the pc with the return address value on the lr. If the function returns a value, it will be passed through r0.
[bookmark: _Toc31036573]Task: Copy and Capitalize String
In this task, you will write a program to perform string copy and capitalization operations. The main function in this program will be written in C language. You will also write assembly language subroutines, that will be called in the main function.
[bookmark: _Toc31036574]Main Function
First, create the main C function. This function is the starting point of the program execution. The main function will contain two variables (“a” and “b”) with character arrays. Variable “a” is a constant that contains a string. The value of variable “a” will be copied into variable “b” from where the content can be modified.
The code snippet below shows the main function. This function calls the two functions my_strcpy and my_capitalize to perform the string copy and capitalization operations in this lab.
1. int main(void)
2. {
3.     const char a[] = "Hello world!";
4.     char b[20];

5.     my_strcpy(a, b);
6.     my_capitalize(b);

7.     while (1);
8. }
Figure 1: Main function.
[bookmark: _Toc31036575]String Copy
The string copy function my_strcpy shown in the code snippet below takes two arguments (src and dst). Each argument is a 32-bit long pointer to a character. Here, a pointer fits into a register, so argument src is passed through register r0 and dst is passed through r1.
This function will load a character from memory, save it into the destination pointer, and increment both pointers until the end of the string.
__asm void my_strcpy(const char *src, char *dst)
{
    loop
    LDRB  r2, [r0]  // Load byte into r2 from memory pointed to by r0 (src pointer)
    ADDS  r0, #1    // Increment src pointer
    STRB  r2, [r1]  // Store byte in r2 into memory pointed to by (dst pointer)
    ADDS  r1, #1    // Increment dst pointer
    CMP   r2, #0    // Was the byte 0?
    BNE   loop      // If not, repeat the loop
    BX    lr        // Else return from subroutine
}
Figure 2: Assemble Code – Copy String from source to destination.
[bookmark: _Toc31036576]String Capitalization
The string capitalization function shown in the code snippet below takes one argument, a pointer to a memory location that contains the string to be capitalized. This function will capitalize all the lower-case letters in the string.
It does this by loading and checking each character in the string to ensure it is a letter before it is capitalized. Each character in the string is represented by its ASCII code. For example, the ASCII code for “A” is 65 (0x41), “B” is 66 (0x42), and so on up to “Z” that uses 90 (0x5a). The lower-case letters start at “a” (97, or 0x61) and end with “z” (122, or 0x7a). A lower-case letter can be converted to an uppercase letter by subtracting 32.
__asm void my_capitalize(char *str)
{
    cap_loop
	LDRB  r1, [r0]    // Load byte into r1 from memory pointed to by r0 (str pointer)
	CMP   r1, #'a'-1  // compare it with the character before 'a'
	BLS   cap_skip    // If byte is lower or same, then skip this byte
	
	CMP   r1, #'z'    // Compare it with the 'z' character
	BHI   cap_skip    // If it is higher, then skip this byte
	
	SUBS  r1,#32      // Else subtract out difference to capitalize it
	STRB  r1, [r0]    // Store the capitalized byte back in memory
	
    cap_skip
	ADDS  r0, r0, #1  // Increment str pointer
	CMP   r1, #0      // Was the byte 0?
	BNE   cap_loop    // If not, repeat the loop
	BX    lr          // Else return from subroutine
}
Figure 3: Assemble Code – Capitalize string.
In the code shown above, if the test byte loaded into r1 is less than “a” or higher than “z,” then the code skips the rest of the tests and proceeds to finish up the loop iteration.
This code has a quirk—the first compare instruction compares r1 against the character immediately before “a” in the table. Why? What we would like is to compare r1 against “a” and then branch if it is lower. However, there is no branch lower instruction, just branch lower or same (BLS). To use that instruction, we need to reduce by one the value we compare r1 against.
[bookmark: _Toc31036577]Lab Procedure
Note that the above results may vary from different test environments, e.g. compiler version.
1. Compile the code and load it onto your board.
2. Run the program until the opening brace in the main function is highlighted. 
3. Open the Registers window (View->Registers Window) and note the values of the stack pointer (r13), link register (r14), and the program counter (r15).
sp = 0x2001_0660, lr = 0x0800_023B, pc = 0x0800_0390.

4. Open the Disassembly window (View->Disassembly Window). Note the instruction and its address pointed to by the yellow arrow. How does this address relate to the value of pc?
SUB sp,sp,#0x28 is at address 0x0800_0390,which is the value of pc. This is the next instruction which will be executed.

5. Step through one machine instruction (F10) while the Disassembly window is selected. Which two registers have changed (they should be highlighted in the Registers window), and how do they relate to the instruction just executed?
The stack pointer r13 has changed to 0x2001_0638, resulting from subtracting 0x28 from 0x2001_0660. The program counter r15 has changed to 0x0800_0392, resulting from executing the subtract instruction (which is two bytes long).
6. Continue stepping through one machine instruction (F10) until you reach the BL.W my_strcpy instruction. What are the values of the sp, pc, and lr?
sp = 0x2001_0638, lr = 0x0800_023B, pc = 0x0800_03A2.
7. Step one line into the my_strcpy function (F11). What has changed and why? Does the pc value agree with what is shown in the Disassembly window?
sp = 0x2001_0638, lr = 0x0800_03A7, pc = 0x0800_024C. lr has changed because the bl.w instruction saved the return address (old value of PC + length of bl.w instruction +1). pc has changed because the pc is loaded with the address of the subroutine to execute. Yes, the PC matches the disassembly window contents – the yellow arrow points to the instruction at 0x0800_0390.

8. What registers hold the arguments to my_strcpy? Note the contents of these registers.
src: register r0, value 0x2001_0650
dst: register r1, value 0x2001_063C
Open a Memory window (View->Memory Windows->Memory 1) and search with the noted address for src.
Open a Memory window (View->Memory Windows->Memory 2) and search with the noted address for dst. 
Right-click on each memory window and select ASCII to display the contents as ASCII text.
9. What are the memory contents addressed by src?
Hello world!
10. What are the memory contents addressed by dst?
Null characters, displayed as ……………. in ASCII mode.
11. Single step through the assembly code watching memory window 2 to see the string being copied character by character from src to dst. What register holds the character?
r2

12. What are the values of the src pointer, the dst pointer, the link register (r14), and the program counter (r15) when the code reaches the last instruction in the subroutine (BX lr)?
src = r0 = 0x2001_065D, dst = r1 = 0x2001_0649, lr = 0x0800_03A7, pc = 0x0800_0258
13. Execute the BX lr instruction. Now what is the value of PC?
pc = 0x0800_03A6
14. What is the relationship between the PC value and the previous LR value?
pc is lr-1. The processor resumes executing code at address 0x0800_025A, but the last bit of the pc is set to indicate the processor is executing in Thumb mode.
15. [bookmark: _Hlk31036666]Now step through the my_capitalize subroutine and verify it works correctly, that is all lowercase letters are replaced by their uppercase equivalent in dst.

	Copyright © 2020 Arm Limited (or its affiliates). All rights reserved. 
Page 2
image2.png

image1.png

