
[bookmark: _Hlk23944236]

[bookmark: _Hlk5118283]

Introduction to Robotic Systems Course
LAB 2
Interrupt Lab Exercise:
[bookmark: _GoBack]Stack Use and Timing Behavior

Contents
1	Introduction	1
1.1	Lab Overview	1
2	Requirements	1
3	Task: Software	1
4	Task: Hardware Setup	1
5	Task: Analysis	3
5.1	CPU Behavior	3
5.1.1	CPU State when Entering HANDLER	3
5.1.2	CPU State after Entering HANDLER	3
5.1.3	CPU State after Exiting Interrupt	4
5.2	Timing	4
5.2.1	Observe Overall CPU Timing Behavior	4
5.2.2	Observe Detailed CPU Timing Behavior	4
5.2.3	Observe Even More Detailed CPU Timing Behavior	5
5.2.4	Pre-emption of Main Code	5

[image: https://community.arm.com/cfs-filesystemfile/__key/communityserver-components-secureimagefileviewer/communityserver-blogs-components-weblogfiles-00-00-00-19-93/ARM_5F00_Education_5F00_vertical_5F00_blue.png_2D00_1800x1012x2.png?_=636836670764988716]

[image:]

	

[bookmark: _Toc31027271]Introduction
[bookmark: _Toc31027272]Lab Overview
This lab exercise presents an example code to introduce the concept and application of interrupts in micro-controller operation using an interrupt service routine (ISR) to service interrupts received from a dual in-line package (DIP) switch. In the code supplied for this lab, the ISR increments a counter whenever an interrupt is received. LEDs connected to the micro-controller output the state of the counter. Also, in this lab, the states of the processor during context switching and interrupt execution is examined using the Keil debug tool.
[bookmark: _Toc5031133][bookmark: _Toc31027273]Requirements
[bookmark: _Hlk27083434][bookmark: _Hlk27083412]The following hardware and software are required to complete this lab:
· Hardware
· [bookmark: _Hlk27083464]OpenCR1.0 Microcontroller Board and ULINK-ME debugger
· Dip Switch, LEDs (x5), 270Ω Resistors (x3), Breadboard and jumper cables
· Logic analyzer
· [bookmark: _Hlk27083518]Software: Keil MDK. Version v5.28 (course was developed with this version)
[bookmark: _Toc31027274]Task: Software
We have provided the complete source code for this lab.
[bookmark: _Toc31027275]Task: Hardware Setup
Use Table 1, the schematic shown in Figure 1, and the OpenCR1.0 board layout in Figure 2 as a guide to connect the switch, LEDs, and resistors to the GPIO port on the MCU.
Connect the debug signals (DBG_Main and DBG_ISR) and the switch signal to a logic analyzer or oscilloscope. The signal DBG_ISR will indicate execution of the handler, while the signal DBG_Main will indicate the program is out of handler mode and is in a loop.
Table 1: Signals and connections
	Signal Name
	Description
	Direction
	MCU
	Arduino Pin on OpenCR1.0

	SW1
	Switch Input
	Input to MCU
	PB4
	3

	DBG_Main
	Main Thread Debug Output
	Output from MCU
	PC1
	7

	DBG_ISR
	ISR Debug Output
	Output from MCU
	PA2
	6

	[bookmark: _Hlk30761947]Red LED
	Counter state
	Output from MCU
	PA8
	5

	Green LED
	Counter state
	Output from MCU
	PC6
	1

	Blue LED
	Counter state
	Output from MCU
	PC7
	0

[image:]

Figure 1: Schematic of LEDs and switch connected to the OpenCR1.0.

[image:]
[bookmark: _Ref346979396]Figure 2: Layout of OpenCR1.0 Highlighting Arduino Pins.
[bookmark: _Toc31027276]Task: Analysis
· Open the supplied project folder and run the Keil MDK project.
· Compile and load the code onto the board.
· Start the debugger session.
· Enable the disassembly window (View->Disassembly Window)
· Set a breakpoint at start of handler function.
· Run the program and then press the switch SW1
[bookmark: _Toc31027277]CPU Behavior
[bookmark: _Toc31027278]CPU State when Entering HANDLER
Examine the stack and CPU registers with the debugger.
1. Complete the table below to show the values of the CPU registers and state information.
	Register
	Value
	Register
	Value
	Register/State
	Value

	R0
	–
	R8
	–
	xPSR
	–

	R1
	–
	R9
	–
	MSP
	–

	R2
	–
	R10
	–
	PSP
	–

	R3
	–
	R11
	–
	PRIMASK
	–

	R4
	–
	R12
	–
	CONTROL
	–

	R5
	–
	R13 (SP)
	–
	Mode
	–

	R6
	–
	R14 (LR)
	–
	Privilege
	–

	R7
	–
	R15 (PC)
	–
	Stack
	–

1. Complete the table below to show what information is on the stack. Open a memory window (View->Memory Windows->Memory 1) and enter SP as the address. Right-click on the window and specify Unsigned->Int as the display format.
	Address
	Value
	Description

	(SP)
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

[bookmark: _Toc31027279]CPU State after Entering HANDLER
Step one line with F11, then examine the stack and CPU registers with the debugger.
1. Complete the table below to show the values of the CPU registers and state information.
	Register
	Value
	Register
	Value
	Register/State
	Value

	R0
	–
	R8
	–
	xPSR
	–

	R1
	–
	R9
	–
	MSP
	–

	R2
	–
	R10
	–
	PSP
	–

	R3
	–
	R11
	–
	PRIMASK
	–

	R4
	–
	R12
	–
	CONTROL
	–

	R5
	–
	R13 (SP)
	–
	Mode
	–

	R6
	–
	R14 (LR)
	–
	Privilege
	–

	R7
	–
	R15 (PC)
	–
	Stack
	–

1. Complete the table below to show what information is on the stack. Open a memory window (View->Memory Windows->Memory 1) and enter SP as the address. Right-click on the window and specify Unsigned->Int as the display format.
	Address
	Value
	Description

	–
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

	–
	–
	–

[bookmark: _Toc31027280]CPU State after Exiting Interrupt
Step out of the handler function (ctrl + F11) and verify the return address.
[bookmark: _Toc31027281]Timing
· Now connect the debug signals to a logic analyzer or oscilloscope if you have not done so already.
· Disable the breakpoint in the handler function and any other breakpoints you may have added.
· Resume program execution.
[bookmark: _Toc31027282]Observe Overall CPU Timing Behavior
Use the falling edge of the Switch input to trigger the data capture/sweep.
Set the time base of the logic analyzer (or oscilloscope) so that a switch press covers about one fourth of the screen. Capture a screenshot showing the switch signal, DBG_ISR, and DBG_MAIN.
1. How long was the switch pressed down?
1. Is there any noticeable delay between the switch being pressed and the ISR running?
1. Does the DBG_MAIN indicate that main stops running at any time?
[bookmark: _Toc31027283]Observe Detailed CPU Timing Behavior
Now zoom in so that the screen displays about 100 µs, centered on the ISR.
1. How long is the DBG_ISR signal asserted?
1. Is there any noticeable delay between the switch being pressed and the ISR running?
1. Does the DBG_MAIN signal indicate that main stops running at any time?
[bookmark: _Toc31027284]Observe Even More Detailed CPU Timing Behavior
Now zoom in so that the screen displays about 10 µs centered on the ISR.
1. How long is the DBG_ISR signal asserted?
1. Is there any noticeable delay between the switch being pressed and the ISR running? How many clock cycles does this correspond to? How does this compare to what you would expect?
1. Does the DBG_MAIN signal indicate that main stops running at any time? If so, calculate for how long.
[bookmark: _Toc31027285]Pre-emption of Main Code
Now zoom in so that the screen displays about 100 us centered on the ISR.
1. For how long is the main function delayed? First measure the pulse width of the DBG_MAIN output signal before the switch is pressed. Then, measure the pulse width when main is pre-empted by the ISR. The difference indicates the total pre-emption time.
1. How long is the total pre-emption in comparison with the duration of the DBG_ISR signal? If the two times aren’t the same, explain why.

	Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Page 2
image3.png
PA8

2700

PC6

2700

®

PC7

2700

®

image4.svg
 270Ω 270Ω 270Ω PB4 PA8 PC6 PC7

image5.emf

image2.png
Fducation

image1.png
//§h ﬁ/] \\?\\ j/
= RN / 0
o J EOIUC @ 1©°

