

L.EEC025 - Fundamentals of Signal Processing (FunSP)

2022/2023 – 1st semester

Week13, 12 Dec 2022

Objectives:

-experimenting adaptive filtering in a system identification configuration highlighting:

 the steepest descent concept

 the impact of the adaptation factor (β)

 the importance of the bandwidth of the excitation signal

DSP Education Kit

LAB 12

Adaptive Filters
Issue 1.0

Contents

1 Introduction ... 1

1.1 Lab overview ... 1

2 Requirements .. 1

3 Adaptive Filter Using C Code [just for familiarization, not LAB assessment] 1

4 Adaptive FIR Filter for Noise Cancellation Using External Inputs [just for

familiarization, not LAB assessment].. 5

5 Normalized Least Mean Squares Algorithm [just informative] 6

6 Adaptive FIR Filter for System Identification of an FIR Filter [this is for LAB

assessment] .. 7

6.1 Lab introduction .. 8

6.2 Adaptive filter experiments .. 11

7 Conclusions .. 14

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 1

1 Introduction

1.1 Lab overview

The examples in these exercise concern variations of an adaptive FIR filter using the Least Mean

Squares (LMS) algorithm, or the Normalized LMS algorithm.

2 Requirements

To carry out this lab, you will need:

 An STM32F746G Discovery board

 A PC running Keil MDK-Arm

 MATLAB

 An oscilloscope

 Suitable connecting cables

3 Adaptive Filter Using C Code [just for familiarization,

not LAB assessment]

This example applies the Least Mean Square (LMS) algorithm, coded in C, to pre-determined input

and desired output signals (sequences). It illustrates the following steps in the adaptation process

using the adaptive structure shown in Figure 1.

1. Obtain new input values x[n] and desired output sample d[n].

2. Compute the output of the adaptive FIR filter y[n] using equation (1).

3. Compute the instantaneous error signal e[n] using equation (2).

4. Update each of the adaptive FIR filter’s coefficients (weights) using equation (3). This is the

(stochastic) LMS approximation of the iterative steepest descent algorithm.

5. Update the contents of the delay line containing N previous input samples.

These steps are repeated at every sampling instant.

�[�] = ∑ ℎ�[�]
���
��� �[� − �] (1)

 �[�] = �[�] − �[�] (2)

 ℎ���[�] = ℎ�[�] + 2��[�]�[� − �] (3)

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 2

Figure 1: Block diagram of adaptive filter implemented by program stm32f7_adaptive.c

The following code snippet shows the program stm32f7_adaptive.c that implements the LMS

algorithm for the adaptive filter structure shown in Figure 1.

The desired output signal used in program stm32f7_adaptive.c is

)8/2cos(2)(nnd  (4)

and the input signal is

)8/2sin()(nnx  (5)

The learning rate, number of filter coefficients, and number of sample instants simulated by the

program are 0.01, 21, and 64, respectively.

// stm32f7_adaptive.c

#include "stm32f7_wm8994_init.h"
#include "stm32f7_display.h"

#define SOURCE_FILE_NAME "stm32f7_adaptive.c"

#define BETA 0.01f // learning rate
#define N 21 // number of filter coeffs
#define NUM_ITERS 64 // number of iterations

float32_t desired[NUM_ITERS]; // storage for results
float32_t y_out[NUM_ITERS];
float32_t error[NUM_ITERS];
float32_t w[N+1] = {0.0}; // adaptive filter weights
float32_t x[N+1] = {0.0}; // adaptive filter delay line
int i, t;
float32_t d, y, e;

int main()
{
 for (t = 0; t < NUM_ITERS; t++)
 {
 x[0] = sin(2*PI*t/8); // get new input sample
 d = cos(2*PI*t/8); // get new desired output
 y = 0; // compute filter output
 for (i = 0; i <= N; i++)
 y += (w[i]*x[i]);
 e = d - y; // compute error
 for (i = N; i >= 0; i--)
 {
 w[i] += (BETA*e*x[i]); // update filter weights

adaptive
filter

input output

-
+

desired
output

error
signal

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 3

 if (i != 0)
 x[i] = x[i-1]; // shift data in delay line
 }
 desired[t] = d; // store results
 y_out[t] = y;
 error[t] = e;
 }
 stm32f7_LCD_init(0, SOURCE_FILE_NAME, GRAPH);
 while(1)
 {
 plotWave(desired, NUM_ITERS, 0, 0);
 proceed_statement();
 plotWave(y_out, NUM_ITERS, 0, 0);
 proceed_statement();
 plotWave(error, NUM_ITERS, 0, 0);
 proceed_statement();
 }
}

Now, run the program stm32f7_adaptive and observe its outputs by following these steps:

1. Build and run program stm32f7_adaptive.c. The program stores the desired output,

output and error signals for 640  n in arrays desired, y_out, and error

respectively. The arrays are of type float32_t.

2. By pressing the blue user pushbutton on the Discovery board, you can cycle through graphs

on the LCD of the first 64 sample values of desired, y_out, and error.

3. Halt the program and save the contents of these arrays to data files by entering

SAVE desired.dat <start address>, <start address + 0x100>

SAVE y_out.dat <start address>, <start address + 0x100>

SAVE error.dat <start address>, <start address + 0x100>

in the Command window in the MDK-Arm debugger. Use the Memory window to find the

start addresses of the arrays desired, y_out, and error.

4. Plot the contents of each of the data files using MATLAB function STM32F7_BAR_real().

The filter output should have converged to the desired output and the error should have

decreased over the 64 sample instants simulated as shown in the following figures.

Figure 2: Desired output desired , simulated using program stm32f7_adaptive.c

0 10 20 30 40 50 60

n

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 4

.

Figure 3: Adaptive filter output y_out, simulated using program stm32f7_adaptive.c

Figure 4: Error signal error, simulated using program stm32f7_adaptive.c

5. Repeat the experiment using a learning rate (beta) of 0.02 and verify that convergence is

faster.

Program stm32f7_adaptive.c is an extremely simplistic demonstration of an adaptive filter. It

is intended to introduce the relationships between input, output, desired output and error signals,

and the role of the learning rate, and to illustrate how simple it can be to implement the LMS

algorithm.

0 10 20 30 40 50 60

n

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

n

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 5

4 Adaptive FIR Filter for Noise Cancellation

Using External Inputs [just for familiarization, not LAB

assessment]

Program stm32f7_noise_cancellation_intr.c requires two external inputs, a desired
signal and a reference noise signal to be input to left and right channels, respectively. Test input
signals are provided in file speechnoise.wav. This may be played through a PC soundcard and
input to the LINE IN socket on the audio card via a stereo 3.5 mm jack plug to 3.5 mm jack plug
cable. speechnoise.wav comprises pseudorandom noise on the left channel and speech on the
right channel.

Figure 5 shows the program in block diagram form. Within the program, a primary noise signal,
correlated to the reference noise signal input on the left channel, is formed by passing the reference
noise through an IIR filter. The primary noise signal is added to the desired signal (speech) input on
the right channel.

Figure 5: Block diagram representation of program stm32f7_noise_cancellation_intr.c

Build and run the program and test it using file speechnoise.wav. As adaptation takes place, the
output on the left channel of HEADPHONE OUT should gradually change from speech plus noise to
speech only. You may need to adjust the volume at which you play the file speechnoise.wav. If
the input signals are too quiet, then the adaptation may be very slow.

While the program is running, use the blue user pushbutton to toggle between graphs on the LCD
showing the adaptive filter coefficients (the impulse response of the adaptive filter) and the
magnitude of their Fast Fourier Transform (FFT).

After adaptation has taken place, and the program has been halted, the 256 coefficients of the
adaptive FIR filter, firCoeffs32, may be saved to a data file by typing:

SAVE <filename> <start address>, <end address>,

adaptive
filter

+

+

-

+

signal

refnoise

signoise

IIR
filter

LINE IN L

LINE IN R

HP OUT L

HP OUT R
error

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 6

where start address is the address of array firCoeffs32 and end address is equal to
start address + 0x400, and plotted using the MATLAB function stm32f7_logfft(). The
filter coefficients should reveal the impulse and magnitude frequency responses of the IIR filter
implemented by the program and shown at the left-hand side of Figure 5. The characteristics of the
IIR filter are determined by the coefficients in header file bilinear.h. You can substitute
different coefficients by including, for example, header file elliptic_bp.h.

5 Normalized Least Mean Squares Algorithm [just

informative, not LAB assessment]

In the previous example, you may have noticed that the rate of adaptation of the system could be

influenced by the amplitudes of the signals involved. This effect can be reduced by using the

Normalized LMS (NLMS) algorithm –the steps involved are summarized below.

1. Obtain new input and desired output sample values x[n] and d[n].

2. Compute the output of the adaptive FIR filter y[n] using equation (1).

3. Compute the instantaneous error signal e[n] using equation (2).

4. Compute the instantaneous energy, energy[n] of the values stored in the filter delay line

(input buffer) x, using equation (6)

5. Update each of the adaptive FIR filter’s coefficients (weights) using equation (7).

6. Update the contents of the delay line containing N previous input samples.

These steps are repeated at every sampling instant.







1

0

2)()(
N

k

kxnenergy (6)

 ℎ���[�] = ℎ�[�] +
��

������
�[�]�[� − �] (7)

Program stm32f7_noise_cancellation_norm_CMSIS_intr.c is a very slightly modified

version of program stm32f7_noise_cancellation_CMSIS_intr.c that implements the

normalized LMS algorithm.

Program stm32f7_noise_cancellation_norm_CMSIS_intr.c makes use of CMSIS

library function arm_lms_norm_f32() in place of function arm_lms_f32() and uses a far

larger learning rate, beta.

You should be able to verify that program

stm32f7_noise_cancellation_norm_CMSIS_intr.c is relatively insensitive to the

volume at which the test file speechnoise.wav is played.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 7

6 Adaptive FIR Filter for System Identification of

an FIR Filter [this is for LAB assessment]

Program stm32f7_FIRadapt_intr_FPS.c uses an adaptive FIR filter configured for system

identification of another FIR filter (unknown to the adaptive filter), as shown in Figure 6.

Figure 6: Block diagram representation of program stm32f7_FIRadapt_intr_FPS.c

Adaptation takes place in real-time while the same Pseudorandom Sequence (generated by function

prand()) is input to both filters. You can watch on an oscilloscope the input of both filters and the

difference between the outputs of the two filters, error. As the adaptive filter assumes the

characteristics of the unknown FIR filter, the variance of the error signal decreases.

For the purposes of appreciating the behavior of the adaptive filter, its rate of adaptation beta has

deliberately been set very low (the range in stm32f7_FIRadapt_intr_FPS.c is between 1E-4
and 1E-0).

While the program is running, use the blue user pushbutton to toggle between graphs on the LCD
showing the adaptive filter coefficients (the impulse response of the adaptive filter).

In one of the graphs (the most important!), two impulse response are shown at the same time. The
reference (ideal) impulse response is shown in blue samples. This impulse response is programmed
in the main() of stm32f7_FIRadapt_intr_FPS.c . The time-varying impulse response of
the adaptive filter is shown in red samples. This way, it is possible to visualize how the adaptive filter
coefficients adapt, in real-time, to the impulse response of the reference filter. It should be
emphasized that this filter is unknown to the adaptive filter. The adaptive filter typically starts from a
vector of zeros and learns the impulse response of the unknown filter through the data (this is the
fundamental idea at the origin of Machine Learning).

The length of the impulse responses of both FIR and adaptive filters is 64.

This example shares many similarities with the noise cancellation example. Both use an adaptive
filter configured for system identification. However, in the case of noise cancellation, the output

adaptive
filter

input output

- +

desired
output

error
signal

FIR
filter

prand()

out Left

out Right

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 8

signal of interest is the error between the desired output and the output of the adaptive filter. On
the other hand, in this example, the interest might be said to lie in the output of the adaptive filter
or in its coefficients. In both examples, an FIR filter is adapted so as to take on the characteristics of
the unknown FIR (which could also be an IIR filter!).

6.1 Lab introduction

In this Lab, we use the main() project file that is named stm32f7_FIRadapt_intr_FPS.c

and that is available on the Moodle platform. Its C code is listed next.

// stm32f7_FIRadapt_intr_FPS.c

// uses normalized LMS

#include "stm32f7_wm8994_init.h"

#include "stm32f7_display.h"

#define BLOCK_SIZE 1

#define NUM_TAPS 64 // was 256

#define SOURCE_FILE_NAME "stm32f7_FIRadapt_intr_FPS.c"

// this is adapted from stm32f7_dft.c

typedef struct

{

 float32_t real; // this represents the ideal impulse response

 float32_t imag; // this represents the adaptive filter impulse response

} COMPLEX;

// reference impulse response versus estimated impulse response

COMPLEX refVSest[NUM_TAPS];

float32_t beta = 1E-3; // between 1E-4 and 1E-0 // using normalized LMS !

float32_t hREF[NUM_TAPS] = {0.0f};

float32_t x[NUM_TAPS] = {0.0f};

float32_t h[NUM_TAPS] = {0.0f};

extern int16_t rx_sample_L;

extern int16_t rx_sample_R;

extern int16_t tx_sample_L;

extern int16_t tx_sample_R;

// float32_t cmplx_buf[2*PING_PONG_BUFFER_SIZE];

// float32_t *cmplx_buf_ptr;

// float32_t outbuffer[PING_PONG_BUFFER_SIZE];

volatile int intr_flag = 0;

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

 float32_t input;

 int16_t i, k;

 static int16_t index = -1;

 float32_t yn, adapt_out, error, dummy, energy;

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 9

 BSP_LED_On(LED1);

 index++; index = index%32768;

 // input = (float32_t)(prbs(8000));

 // input = (float32_t)(rx_sample_L);

 input = 0.5f * prand();

 // input = 4000.0f*sin(2*PI*3000.0f/8000.0f*(float32_t)(index));

 x[0] = input; yn=0.0;

 for (k=0 ; k<NUM_TAPS ; k++)

 {

 yn += x[k] * hREF[NUM_TAPS-1-k];

 }

 adapt_out = 0.0; energy = 0.0;

 for (i=0; i<NUM_TAPS; i++)

 {

 adapt_out += (h[i]*x[i]);

 energy += x[i]*x[i];

 }

 error = yn - adapt_out;

 for (i = NUM_TAPS-1; i >= 0; i--) // update weights

 {

 dummy = beta*error;

 dummy = dummy*x[i];

 h[i] = h[i] + dummy/energy;

 }

 for (i = NUM_TAPS-1; i > 0; i--) x[i] = x[i-1]; // update delay line

 for(k=0; k < NUM_TAPS; k++)

 {

 refVSest[k].imag = h[NUM_TAPS-1-k]; // update most recent estimate

 }

 BSP_LED_Off(LED1);

 tx_sample_R = (int16_t)(error);

 tx_sample_L = (int16_t)(input);

 return;

}

int main(void)

{

 int start, k;

 int button = 0;

 // initialize our reference FIR impulse response

 start = 4;

 for(k=0; k <= 5; k++)

 {

 *(hREF+start+k) = -0.1f * (float32_t)(k+1);

 *(hREF+start+10-k) = *(hREF+start+k);

 }

 start += 11;

 for(k=0; k <= 16; k++)

 {

 *(hREF+start+k) = 0.15f * (float32_t)(k+1);

 *(hREF+start+32-k) = *(hREF+start+k);

 }

 start += 33;

 for(k=0; k < 11; k++)

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 10

 {

 *(hREF+start+k) = *(hREF+4+k);

 }

 // this data is to be ploted (ideal versus estimated impulse response)

 for(k=0; k < NUM_TAPS; k++)

 {

 refVSest[k].real = *(hREF+k);

 refVSest[k].imag = 0.0f; // start with zeros

 h[k]=0.0f; x[k]=0.0f;

 }

 stm32f7_wm8994_init(AUDIO_FREQUENCY_8K,

 IO_METHOD_INTR,

 INPUT_DEVICE_INPUT_LINE_1,

 OUTPUT_DEVICE_HEADPHONE,

 WM8994_HP_OUT_ANALOG_GAIN_6DB,

 WM8994_LINE_IN_GAIN_0DB,

 WM8994_DMIC_GAIN_0DB,

 SOURCE_FILE_NAME,

 GRAPH);

 while(1)

 {

 button = checkButtonFlag();

 if (button == 1)

 {

 plotLMS(h, NUM_TAPS, LIVE);

 }

 else if (button == 0)

 {

 plotWave(&refVSest->real, NUM_TAPS, 1, 1);

 // for(i=0; i<NUM_TAPS; i++)

 // {

 // cmplx_buf[2*i] = h[i];

 // cmplx_buf[2*i + 1] = 0.0;

 // }

 // arm_cfft_f32(&arm_cfft_sR_f32_len256, (float32_t *)(cmplx_buf), 0, 1);

 // arm_cmplx_mag_f32((float32_t *)(cmplx_buf),(float32_t *)(outbuffer), NUM_TAPS);

 // plotLogFFT(outbuffer, NUM_TAPS, LIVE);

 }

 }

}

Take a moment to analyze this code, to understand how the impulse response of the reference FIR

filter is set, and the parts of the code implementing Equations (1), (2), (6) and (7).

Now we proceed, as indicated next, to compile the code, upload it to the STM32F7 board, and to run

it. In this experiment, external analog signals generated by the function generator are not required.

After unzipping it, take the stm32f7_FIRadapt_intr_FPS.c file to the “src” directory that is

located under the folder:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 11

Remember that the directory where you can find the DSP_Education_Kit.uvprojx project

file is:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\MDK-ARM

You can copy-paste this link directly to File Explorer in Windows for a quick and easy access. For your

convenience, this link is also available on a TXT file on Moodle.

As in previous labs, we use the DSP_Education_Kit.uvprojx project file as our baseline

project. This project file is represented by the icon , or just

. Double-click on this file/icon to start the Keil MDK-Arm development

environment (µVision). Replace the existing main() file in that project by the new main() that is

stm32f7_FIRadapt_intr_FPS.c .

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting

the debugger), and then to run the code.

6.2 Adaptive filter experiments

In stm32f7_FIRadapt_intr_FPS.c the reference impulse response is programmed

according to the shape illustrated in Figure 7. This shape is intended to facilitate visualization and

modification.

Figure 7: Shape of the reference impulse response programmed in stm32f7_FIRadapt_intr_FPS.c

Make sure that the code is running in real-time and take the STM32F746G LINE OUT LEFT and RIGHT

output channels to the CHAN1 and CHAN2 inputs of the oscilloscope. As indicated before, in the lab

we do not use the STM32F746G LINE IN inputs given that all signals are generated inside the

STM32F746G kit.

Recall that Figure 6 identifies which signals are represented on the oscilloscope.

11 samples 33 samples 11 samples

n

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 12

Right after you press the blue button1 on the STM32F746G kit, you should see an evolution of the

represented signals, on both the STM32F746G kit, and the oscilloscope, as figure 8 documents

(please note that as pointed out at the beginning of Section 6, on the LCD display of the

STM32F746G kit you observe two plots, one in blue, and another one in red).

Figure 8: Screenshots of both the STM32F746G LCD and oscilloscope signals when program

stm32f7_FIRadapt_intr_FPS.c is running.

Question 1 [2 pt / 10]: Identify the signals being represented on both the STM32F746G LCD and

oscilloscope and explain why the amplitude of one of the signals in the oscilloscope decreases while

one of the signals represented on the STM32F746G LCD converges to a target shape. Use the

concepts of system identification, learning, and error in your explanation.

Now, stop the execution and modify in the stm32f7_FIRadapt_intr_FPS.c code the way

the reference impulse response is programmed such that the shape becomes different from the

original; for example, figure 9 illustrates two (easy) possibilities.

Figure 9: Two possible (and easy) modifications to the reference impulse response programmed in

stm32f7_FIRadapt_intr_FPS.c .

1 Please note that the STM32F7 kit has also a black button. If pressed, it restarts the code execution, which
may be useful to restart the operation of the adaptive filter.

n

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 13

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting

the debugger), and then to run the code.

Question 2 [2 pt / 10]: Show that convergence is still achieved independently of the modification

on the pre-programmed reference impulse response.

Question 3 [2 pt / 10]: Stop the code execution and modify the value of the “beta” factor in the

stm32f7_FIRadapt_intr_FPS.c to a new value between 1E-4 and 1E-0. Then proceed as

usual to compile the code, downloading it to the STM32F746G board (by starting the debugger),

and then to run the code. Try at least two alternatives. What is the impact of that change ? Do you

confirm that the behavior of the execution is as expected ? In what sense ?

Question 4 [2 pt / 10]: Stop the code execution and modify the value of the “beta” factor in the

stm32f7_FIRadapt_intr_FPS.c to a new value slightly above 1E-0, for example, 2. After you

compile, download and run the code, you should then see a representation of the LCD screen as

illustrated in Figure 10. How do you explain this outcome ?

Figure 10: Illustrative result when the “beta” factor in stm32f7_FIRadapt_intr_FPS.c is 2.

In stm32f7_FIRadapt_intr_FPS.c, set the “beta” factor again to its initial value: beta =

1E-3.

Admit now that we introduce deliberately a bug in the code by changing the following code line:

 h[i] = h[i] + dummy/energy;

to

 h[i] = h[i] - dummy/energy;

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 14

Proceed to compile the code, downloading it to the STM32F746G board (by starting the debugger),

and then to run the code. Watch the signals being represented on the STM32F746G LCD and

oscilloscope.

Question 5 [2 pt / 10]: How do you interpret and explain the observations ?

Now, stop the code execution, reverse the previous code modification, uncomment the following

code line:

 // input = 4000.0f*sin(2*PI*3000.0f/8000.0f*(float32_t)(index));

and keep beta = 1E-3. Proceed to compile the code, downloading it to the STM32F746G board (by

starting the debugger), and then to run the code. After running, you should obtain a representation

of the signals as suggested in Figure 11.

Figure 11: Illustrative results when the excitation signal is sinusoidal.

Question 6: The results suggest that the adaptive filter is not capable to operate as intended, even if

the amplitude or frequency of the sinusoid is changed. How do you explain that ?

Note: the answer to this question may imply additional search beyond the information that is available on the

lecture slides.

7 Conclusions

This laboratory exercise has introduced the LMS and normalized LMS algorithms for adaptive FIR

filters. Real-time implementations of system identification have been demonstrated.

