

L.EEC025 - Fundamentals of Signal Processing (FunSP)

2022/2023 – 1st semester

Week11, 28 Nov 2022

Objectives:

-design, analysis, implementation and real-time operation of a 6th-order band-stop filter:

 design and decomposition of the 6th-order band-stop filter into second-order

sections

 implementation of 6th-order band-stop filter for real-time operation on the

STM32F7 Discovery kit

 conversion of the 6th-order band-stop filter into a 6th-order all-pass filter by just

acting on the C code implementing the cascade of second-order sections

DSP Education Kit

LAB 10

Infinite Impulse Response (IIR) Filter
Issue 1.0

Contents

1 Introduction ... 1

1.1 Lab overview ... 1

2 Requirements .. 1

3 IIR band-stop filter design and characteristics .. 1

4 Preparing the IIR band-stop filter for real-time operation 5

5 Measuring the IIR band-stop filter Frequency Response 7

5.1 Setting-up for this lab experiment .. 7

5.2 Sketching the frequency response magnitude of the IIR band-stop filter 8

6 Converting the IIR band-stop filter into an all-pass filter 9

7 Conclusions .. 11

8 Additional References .. 12

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 1

1 Introduction

1.1 Lab overview

This Lab motivates the design and experimental test of a 6th-order IIR filter that is implemented as a

cascade of three second-order sections (or biquads). The filter consists of a band-stop filter whose

structure of poles and zeros is analyzed. The frequency response of the filter is measured when it is

operating in real-time and a simple filter modification is proposed converting the 6th-order band-

stop filter into a 6th-order all-pass filter preserving the poles of the band-stop filter.

2 Requirements

To carry out this lab, you will need:

 An STM32F746G Discovery board

 A PC running Keil MDK-Arm

 MATLAB

 An oscilloscope

 Suitable connecting cables

 An audio frequency signal generator

3 IIR band-stop filter design and characteristics

Our IIR band-stop filter correspond to the 6th-order Butterworth filter that was discussed in the
context of the week09 TP class (November 9), Problem 2. That filter passes the frequency bands
between 0 and 2π/5, and 3π/5 and π, and rejects frequencies in between. It is designed using the
following Matlab commands:

format long

wc=[2/5 3/5];

[b, a]=butter(3,wc,'stop');

[H W]=freqz(b,a,512);

figure(1)

plot(W/pi,abs(H))

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 2

Question 1: Assuming that the sampling frequency is 8 kHz, represent graphically the zero-pole

diagram as well as the frequency response magnitude of the 6th-order band-stop IIR filter. Represent

frequency using two different but equivalent frequency axes: �/� (in the range [0, 1]) and freq (in

Hz, in the range [0, FN] where FN is the Nyquist frequency). In particular, taking into consideration the

definition of -3 dB cutoff frequency, specify what the gain (linear, not dB) is for ω=2π/5, and ω=3π/5,

relative to the case where ω=0 rad.

ω = 2π/5 → � = (Hz) → GAIN =

ω = 3π/5 → � = (Hz) → GAIN =

Now, we decompose the transfer function of the 6th-order Butterworth filter into a cascade of three
second-order sections by executing the following Matlab commands:

[SOS] = tf2sos(b,a);

figure(2)

zplane(SOS(1,1:3), SOS(1,4:6))

As explained in the preliminary considerations of the week09 TP class Problem 2 (also by typing help

tf2sos on the Matlab command window), in this case, SOS is a 3 by 6 matrix with the following

structure:

 SOS = [b00 b01 b02 1 a01 a02

 b10 b11 b12 1 a11 a12

 B20 b21 b22 1 a21 a22]

where each row specifies the coefficients of the transfer function of each second-order section, as
illustrated in Figure 1.

Re

Im

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 3

Figure 1: Cascade of three second-order sections (Direct form II implementations) of an IIR filter

The above Matlab command also plots the zero-pole diagram characterizing the first second-order
section.

Question 2: Represent next the zero-pole diagram as well as the frequency response magnitude of
each individual second-order section (or biquad), and explain why zeros and poles occur in complex-
conjugate pairs. Are the individual plots consistent with the plots characterizing the 6th-order band-
stop IIR filter as represented in your answer to Question 1 ? In particular, what specific aspect of the
6th-order band-stop filter is that the poles off of the imaginary axis help to specify ?

Zero-pole diagram and frequency response magnitude of the first biquad:

-1

Z

-1

Z

b00

b01

b02

-a01

-a02

-1

Z

-1

Z

b10

b11

b12

-a11

-a12

-1

Z

-1

Z

b20

b21

b22

-a21

-a22

x[n] y[n]

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 4

Zero-pole diagram and frequency response magnitude of the second biquad:

Re

Im

/

Re

Im

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 5

Zero-pole diagram and frequency response magnitude of the third biquad:

4 Preparing the IIR band-stop filter for real-time

operation

The SOS matrix specifying the coefficients of the transfer functions of all second-order sections will

be used in order to create a header file, named bandstopIIR.h, that will be included in the main
file of the STM32F7 project. In that sense, we use the Matlab function named
iirsos_coeffs_mod() that is available on the Moodle platform. At the MATLAB terminal, type

iirsos_coeffs_mod(SOS) and enter the filename, bandstopIIR.h. Check this file in order
to understand how the coefficients are arranged in vectors b[][], and a[][].

Question 3: Given that all second-order sections will be implemented using Direct form Type 2
realization structures, i.e., using the corresponding difference equations, what is common and what
is different between the coefficients in vectors b[][] and a[][] and the coefficients used by the
realization structures ?

In this Lab, we use the main() project file that is named stm32f7_iirsos_intr_FPS.c

and that is available on the Moodle platform. Its C code is listed next.

Re

Im

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 6

// stm32f7_iirsos_intr_FPS.c

#include "stm32f7_wm8994_init.h"

#include "stm32f7_display.h"

#include "bandstopIIR.h"

#define SOURCE_FILE_NAME "stm32f7_iirsos_intr_FPS.c"

extern int16_t rx_sample_L;

extern int16_t rx_sample_R;

extern int16_t tx_sample_L;

extern int16_t tx_sample_R;

float w[NUM_SECTIONS][2] = {0};

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

 int16_t section; // second order section number

 float32_t input; // input to each section

 float32_t wn, yn; // intermediate and output values

 input =(float32_t)(rx_sample_L);

 for (section=0 ; section < NUM_SECTIONS ; section++)

 {

 wn = input - a[section][1]*w[section][0]

 - a[section][2]*w[section][1];

 yn = b[section][0]*wn + b[section][1]*w[section][0]

 + b[section][2]*w[section][1];

 w[section][1] = w[section][0];

 w[section][0] = wn;

 input = yn;

 }

 tx_sample_R = (int16_t)(yn); // will appear in OUT LEFT channel

 tx_sample_L = rx_sample_L; // will appear in OUT RIGHT channel

 return;

}

int main(void)

{

 stm32f7_wm8994_init(AUDIO_FREQUENCY_8K,

 IO_METHOD_INTR,

 INPUT_DEVICE_INPUT_LINE_1,

 OUTPUT_DEVICE_HEADPHONE,

 WM8994_HP_OUT_ANALOG_GAIN_0DB,

 WM8994_LINE_IN_GAIN_0DB,

 WM8994_DMIC_GAIN_0DB,

 SOURCE_FILE_NAME,

 NOGRAPH);

 while(1){}

}

Take a moment to analyze this code, to understand how each second-order section is implemented,

how the cascade is organized and implemented, and to check the consistency between this code and

your answer to Question 3.

Now we proceed, as indicated next, to compile the code, upload it to the STM32F7 board, and to run

it.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 7

After unzipping them, take the stm32f7_iirsos_intr_FPS.c and bandstopIIR.h files

to the “src” directory that is located under the folder:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\

Remember that the directory where you can find the DSP_Education_Kit.uvprojx project

file is:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\MDK-ARM

You can copy-paste this link directly to File Explorer in Windows for a quick and easy access. For your

convenience, this link is also available on a TXT file on Moodle.

As in previous labs, we use the DSP_Education_Kit.uvprojx project file as our baseline

project. This project file is represented by the icon , or just

. Double-click on this file/icon to start the Keil MDK-Arm development

environment (µVision). Replace the existing main() file in that project by the new main() that is

stm32f7_iirsos_intr_FPS.c .

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting

the debugger), and then to run the code.

5 Measuring the IIR band-stop filter Frequency

Response

5.1 Setting-up for this lab experiment

Set the function generator to generate a sine wave having 5 Vpp and 100 Hz. Using a “T” and a BNC-

BNC cable, take the output of the function generator to CHAN1 of the oscilloscope, and also to the

(left channel of the) LINE IN socket on the Discovery board (Remember: make sure that you use the

adapter with the blue mini-jack whose interface board has a resistor divider. It is meant to protect

the analog input of the kit against excessive voltage levels).

Then, using another BNC-BNC cable, take the LEFT channel (yes, LEFT channel) of the STM32F746G

LINE OUT output to the CHAN2 input of the oscilloscope.

Using the oscilloscope SETTINGS button and menu, make sure that the Vpp and frequency of both

input and output signals are being measured in real-time.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 8

5.2 Sketching the frequency response magnitude of the IIR band-

stop filter

The frequency response of a filter reflects its gain at different frequencies. As seen in previous lab

experiments, one way of assessing the frequency response of the filter is simply to measure its gain

using a sinusoidal input signal at a few frequencies of interest.

Here, we measure the magnitude frequency response of the IIR band-stop filter whose theoretical

frequency response is your answer to Question 1.

You will vary the frequency from 100 Hz, up to 3.8 kHz, and take note of the Vpp and frequency of

the output wave represented on the oscilloscope. Only a few frequencies should suffice: 100 Hz

(which we will take as an approximation for 0 Hz), 3800 Hz (which we will take as an approximation

for 4 kHz), the two cut-off frequencies that are anticipated in Question 1, and just a few more

frequencies to characterize the filter response in the stop-band.

Based on these measurements, sketch in the following plot the approximate frequency response

magnitude of the IIR band-stop filter that is implemented by the above C code when you vary the

frequency from 100 Hz up to 3.8 kHz.

Question 4: Is this sketch consistent with the expected frequency response magnitude that is

specified in your answer to Question 1 ? Are the measured cut-off frequencies as expected in your

answer to Question 1 ?

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 9

6 Converting the IIR band-stop filter into an all-

pass filter

Now, we convert the above IIR band-stop filter into a 6th-order all-pass filter that preserves the same

poles of the IIR band-stop filter. This should be achieved by just changing the

Interrupt_CallBack() function in a simple and appropriate way:

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

 int16_t section; // second order section number

 float32_t input; // input to each section

 float32_t wn, yn; // intermediate and output values

 input =(float32_t)(rx_sample_L);

 for (section=0 ; section < NUM_SECTIONS ; section++)

 {

 ...

 }

 tx_sample_R = (int16_t)(yn); // will appear in OUT LEFT channel

 tx_sample_L = rx_sample_L; // will appear in OUT RIGHT channel

 return;

}

Question 5: Represent next the zero-pole diagram of the all-pass filter, as well as its expected

frequency response.

Re

Im

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 10

Create a copy of the above stm32f7_iirsos_intr_FPS.c code and name it

stm32f7_iirsos_intr_FPS_AP.c. Perform the appropriate modifications in this new C code

in order to program a 6th-order all-pass filter that preserves the same poles of the above IIR band-

stop filter.

Now, proceed as usual to set this code as the main project file, to compile the code, to download it

to the STM32F746G board (by starting the debugger), and then to run the code.

Take the two STM32F746G LINE OUT channels to the CHAN1 and CHAN2 inputs of the oscilloscope.

When you vary the frequency of an input sinusoid from 100 Hz, up to 3.8 kHz, the Vpp amplitudes in

the two channels should be comparable (given that both channels are affected by all-pass filters

having the same frequency response magnitude). If the Vpp amplitudes in the two channels are not

comparable for all frequencies in the range 100 Hz - 3.8 kHz then, most likely, your

stm32f7_iirsos_intr_FPS_AP.c code contains errors, fix them before proceeding.

Note: refrain from using trial-and-error: think first of what could be wrong before you try to change/fix the C

code.

By observing the real-time operation of the all-pass filter, sketch in the following plot its

approximate frequency response magnitude when you vary the frequency from 100 Hz up to 3.8

kHz.

Question 6: Is this sketch consistent with the expected frequency response magnitude that is

specified in your answer to Question 5 ? If not, what is different and why ?

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 11

Now, use as input a sawtooth wave (i.e., a triangular wave with a 5% duty cycle) having a

fundamental frequency of 200 Hz and keep the two STM32F746G LINE OUT channels connected to

the CHAN1 and CHAN2 inputs of the oscilloscope. You should obtain a graphical representation on

the oscilloscope that is similar to the screenshots that are represented in Figure 2, where one

channel represents the input to the all-pass filter, and the other represents the all-pass filter output.

Figure 2: Oscilloscope screenshot representing the input and output of the 6th-order all-pass filter when the
input signal is a 200 Hz sawtooth wave

Question 7: Are the graphical representations in the screen of your oscilloscope consistent with

those in Figure 2 ? Explain why the represented LEFT and RIGHT signals are not the same given that

the filters affecting both channels are all-pass filters sharing the same frequency response

magnitude .

7 Conclusions

This Lab motivated the design, implementation and experimental test of a 6th-order IIR band-stop

filter. The advantages of decomposing the filter into second-order section have been implicitly

highlighted. Finally, a simple conversation of the 6th-order IIR band-stop filter into a 6th-order IIR all-

pass filter has been motivated as well as the experimental verification of its impact on structured

waves such as the sawtooth wave.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 12

8 Additional References

L.EEC025 Fundamental of Signal Processing course materials (lectures slides, videos, and notes),

especially the lecture slides on “The frequency domain characterization of discrete-time LTI

systems”:

https://moodle.up.pt/course/view.php?id=3853

