

L.EEC025 - Fundamentals of Signal Processing (FunSP)

2022/2023 – 1st semester

Week09, 14 Nov 2022

Objectives:

-modifying and measuring the frequency response of FIR filters running in real-time on the

STM32F746G Discovery board:

 designing an equiripple linear-phase FIR of order 80

 creating two modified versions of the designed FIR filter

 obtaining experimentally the frequency responses of all three filters and

comparing them to the theoretical ones

DSP Education Kit

LAB 8

Finite Impulse Response (FIR) Filters
Issue 1.0

Contents

1 Introduction ... 1

1.1 Lab overview ... 1

2 Requirements .. 1

3 The FIR filter to be tested and modified ... 1

4 FIR Filter with Coefficients Specified in Separate Header File 4

5 Completing the C code ... 4

6 Measuring the Frequency Responses ... 7

6.1 Setting-up for this lab experiment .. 8

6.2 Sketching the frequency response of the baseline FIR filter .. 8

6.3 Sketching the frequency response of the H(-z) FIR filter .. 9

6.4 Sketching the frequency response of the H(z2) FIR filter .. 10

7 Extra-class: Generating FIR Filter Coefficient Header Files Using MATLAB

 11

8 Conclusions .. 13

9 Additional References .. 13

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 1

1 Introduction

1.1 Lab overview

The examples in this exercise introduce some of the concepts of Finite Impulse Response (FIR)

filtering. Also explored are various methods of modifying and estimating the magnitude frequency

response of FIR filters implemented in real-time.

2 Requirements

To carry out this lab, you will need:

 An STM32F746G Discovery board

 A PC running Keil MDK-Arm

 MATLAB

 An oscilloscope

 3.5 mm audio jack cables + BNC cables

 An audio frequency signal generator

3 The FIR filter to be tested and modified

The FIR filter that we test and modify experimentally in this lab is an equiripple linear-phase filter of

order 80 (this means that the length of its impulse response is 81 samples). The filter has a peculiar

frequency response magnitude so as to facilitate its experimental assessment. The filter is designed

in Matlab using the Parks MacClellan optimization algorithm that is called by the Matlab command

firpm() :

order=80;
f=[0 0.465 0.535 1.0];
m=[1 1 0 1];
w=[1 1];
h=firpm(order,f,m,w);

frange=pi*[-1:1/256:1-1/256];
[H W]=freqz(h,1,frange);
plot(W/pi, abs(H), 'LineWidth', 2)
xlabel('\omega/\pi')
ylabel('GAIN')

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 2

The corresponding frequency response magnitude is as illustrated in Figure 1.

Figure 1: Frequency response magnitude of the FIR filter to be tested in the lab

Question 1 [1 pt / 10]: Assuming that the sampling frequency is 8 kHz, represent graphically the

frequency response magnitude that you expect to observe in the lab. Represent frequency using two

different but equivalent frequency axes: �/� (in the range [0, 1]) and freq (in Hz, in the range [0,

FN] where FN is the Nyquist frequency).

In particular, specify the exact frequencies, in Hertz, that correspond to the upper limit of the lower

band (�/� = 0.465), and the lower limit of the upper band (�/� = 0.535) where, very

approximately, ������ ≅ 0.

G
A

IN

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 3

�

�
= 0.465 → (Hz)

�

�
= 0.535 → (Hz)

In this lab, we will also perform and assess experimentally the impact of two types of filter

modification that have been studied in Problem 2 of the week05 TP class (video is available on

Moodle). In fact, if the impulse response of our linear-phase FIR is ℎ[�], and if its Z-Transform is

�(�), we will create two modified versions of ℎ[�] such that their Z-Transforms are �(��), and

�(−�). The impact of these transformations are as illustrated in Figure 2 (not necessarily according

to this order).

a) b) c)

Figure 2: Frequency response transformations of an original FIR filter a).

Question 2 [1 pt / 10]: If the Z-Transform of ℎ[�] is �(�), indicate what transformation in ℎ[�]

causes its Z-Transform to become �(��). Specify that modification for all � describing the modified

(or new) impulse response. Implement the modification in Matlab and check the resulting frequency

response. What frequency reponse (b) or c)) in Figure 2 corresponds to this modified filter ?

Answer:

Question 3 [1 pt / 10]: If the Z-Transform of ℎ[�] is �(�), indicate what transformation in ℎ[�]

causes its Z-Transform to become �(−�). Specify that modification for all � = 0,1, ⋯ � − 1, where

N=81. Implement the modification in Matlab and check the resulting frequency response. What

frequency reponse (b) or c)) in Figure 2 corresponds to this modified filter?

Answer:

G
A

IN

G
A

IN

G
A

IN

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 4

4 FIR Filter with Coefficients Specified in

Separate Header File

In previous labs, we tested FIR and IIR filters whose coefficients were specified explicitly on the C

code. This is quite acceptable when the number of coefficients is low, in the order of 10, or less.

When the number of coefficients is large, it is more practical to specify the filter coefficients in a

separate header file. That is the case of the current lab that uses a header file (FPS81.h) that is

included in the C code baseline to be used in this lab: stm32f7_fir_intr_FPS81.c . Both

files are included in a ZIP that is available on Moodle.

Thus, the C code stm32f7_fir_intr_FPS81.c implements an FIR filter for which the filter

coefficients ℎ[�] are not specified within this source file but are read from a separate header file

which is included by using the preprocessor command

#include “FPS81.h”

This also means that in order to change the characteristics of the FIR filter implemented, it is

sufficient to change in the preprocessor command the name of the header file to be included, and

Rebuild the project. For more on this possibility, see Section 7.

5 Completing the C code

In this lab experiment, we will use the main() project file that is named

stm32f7_fir_intr_FPS81.c and that is available on the Moodle platform. Its C code, which

is not complete, is listed next.

// stm32f7_fir_intr_FPS81.c

#include "stm32f7_wm8994_init.h"

#include "FPS81.h"

#include "stm32f7_display.h"

#define SOURCE_FILE_NAME "stm32f7_fir_intr_FPS81.c"

extern int16_t rx_sample_L;

extern int16_t rx_sample_R;

extern int16_t tx_sample_L;

extern int16_t tx_sample_R;

#define Nm1 2*N-1

enum filtertype{Plain, Shifted, Upsampled};

float32_t x[Nm1];

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 5

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

 int16_t i,j;

 float32_t yn = 0.0;

 // uncomment just one of the following three lines

 enum filtertype myfilter=Plain;

 // enum filtertype myfilter=Shifted;

 // enum filtertype myfilter=Upsampled;

 x[0] = (float32_t)(rx_sample_L);

 BSP_LED_On(LED1);

 switch (myfilter)

 {

 case Plain:

 for (i=0 ; i<N ; i++) yn += h[i] * x[i];

 break;

 case Shifted:

 // please complete your code here

 break;

 case Upsampled:

 // please complete your code here

 break;

 default:

 for (i=0 ; i<N ; i++) yn += h[i] * x[i];

 }

 for (j=(Nm1-1) ; j>0 ; j--) x[j] = x[j-1];

 BSP_LED_Off(LED1);

 tx_sample_R = (int16_t)(yn);

 tx_sample_L = tx_sample_R;

 return;

}

int main(void)

{

 stm32f7_wm8994_init(AUDIO_FREQUENCY_8K,

 IO_METHOD_INTR,

 INPUT_DEVICE_INPUT_LINE_1,

 OUTPUT_DEVICE_HEADPHONE,

 WM8994_HP_OUT_ANALOG_GAIN_0DB,

 WM8994_LINE_IN_GAIN_0DB,

 WM8994_DMIC_GAIN_9DB,

 SOURCE_FILE_NAME,

 NOGRAPH);

 while(1){}

}

Before you compile and run this code, you need to complete it (before the lab class!).

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 6

Question 4 [1 pt / 10]: in the C code, under “case Shifted:” which corresponds to one of the

above filter transformations, replace the comment “// please complete your code here” by

one of the following 3 alternatives (only one is correct):

Alternative A:

 for (i=0 ; i<N ;)

 {

 yn += h[i] * x[i]; i++;

 }

Alternative B:

 for (i=0 ; i<N ;)

 {

 yn -= h[i] * x[i]; i++;

 }

Alternative C:

 for (i=0 ; i<(N-1) ;)

 {

 yn += h[i] * x[i]; i++;

 yn -= h[i] * x[i]; i++;

 }

 yn += h[i] * x[i];

Explain what alternative is correct taking into consideration your answer to either Question 2, or

Question 3.

Question 5 [1 pt / 10]: in the C code, under “case Upsampled:” which corresponds to one of

the above filter transformations, replace the comment “// please complete your code

here” by one of the following 3 alternatives (only one is correct):

Alternative A:

 for (i=0, j=0 ; i<N ; i++)

 {

 yn += h[i] * x[j];

 j+=2;

 }

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 7

Alternative B:

 for (i=0, j=0 ; i<N ; i++)

 {

 yn += h[2*i] * x[j];

 j++;

 }

Alternative C:

 for (i=0, j=0 ; i<N ; i++, j++)

 {

 yn += h[2*i] * x[2*j];

 }

Explain what alternative is correct taking into consideration your answer to either Question 2, or

Question 3.

6 Measuring the Frequency Responses

After you complete the C code as recommended in the previous section, proceed, as indicated next,

to compile the code, upload it to the STM32F7 board, and to run it.

After unzipping them, take the stm32f7_fir_intr_FPS81.c (which should be completed

according to the suggestions in Section 5) and FPS81.h files to the “src” directory that is located

under the folder:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\

Remember that the directory where you can find the the DSP_Education_Kit.uvprojx

project file is:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\MDK-ARM

You can copy-paste this link directly to File Explorer in Windows for a quick and easy access. For your

convenience, this link is also available on a TXT file on Moodle.

As in previous labs, we use the DSP_Education_Kit.uvprojx project file as our baseline

project. This project file is represented by the icon , or just

. Double-click on this file/icon. This starts the Keil MDK-Arm development

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 8

environment (µVision). Replace the existing main() file in that project by the new main() that is

stm32f7_fir_intr_FPS81.c .

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting

the debugger), and then to run the code.

6.1 Setting-up for this lab experiment

Set the function generator to generate a sine wave having 5 Vpp and 100 Hz. Using a “T” and a BNC-

BNC cable, take the output of the function generator to CHAN1 of the oscilloscope. Connect the

output of a sinusoidal signal generator (i.e. the function generator) to the (left channel of the) LINE

IN socket on the Discovery board (Remember: make sure that you use the adapter with the blue

mini-jack whose interface board has a resistor divider. It is meant to protect the analog input of the

kit against excessive voltage levels).

Then, using another BNC-BNC cable, take the LEFT channel (yes, LEFT channel) of the STM32F746G

LINE OUT output to the CHAN2 input of the oscilloscope.

Using the oscilloscope SETTINGS button and menu, make sure that the Vpp and frequency of both

input and output signals are being measured in real-time.

6.2 Sketching the frequency response of the baseline FIR filter

The frequency response of a filter reflects its gain at different frequencies. As seen in previous lab

experiments, one way of assessing the frequency response of the filter is simply to measure its gain

using a sinusoidal input signal at a few frequencies of interest.

In this section, we measure the magnitude frequency response of the baseline FIR filter that is

signaled in the C code as “Plain”, and whose theoretical frequency response is depicted in Figure 1.

In this experiment, you will vary the frequency from 100 Hz, up to 3.8 kHz, and take note of the Vpp

and frequency of the output wave represented on the oscilloscope. Only four frequencies should

suffice: 100 Hz (which we will take as an approximation for 0 Hz), 3800 Hz (which we will take as an

approximation for 4 kHz), and two other frequencies that are anticipated in Question 1.

Based on these measurements, sketch in the following plot the approximate frequency response

magnitude of the baseline FIR filter that is implemented by the above C code when you vary the

frequency from 100 Hz up to 3.8 kHz.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 9

Question 6 [1 pt / 10]: Is this sketch consistent with the expected frequency response magnitude

that is represented in Figure 1 and in Question 1 ?

6.3 Sketching the frequency response of the H(-z) FIR filter

In this section, we measure the magnitude frequency response of the modified FIR filter whose

transfer function is H(-z) and that is signaled in the C code as one of the two “Shifted” or

“Upsampled ”cases. Its theoretical frequency response is depicted in Figure 2.

In this experiment, you will vary the frequency from 100 Hz, up to 3.8 kHz, and take note of the Vpp

and frequency of the output wave represented on the oscilloscope. As in the previous experiment,

only a few frequencies should suffice in addition to 100 Hz (which we will take as an approximation

for 0 Hz), and 3800 Hz (which we will take as an approximation for 4 kHz).

Based on these measurements, sketch in the following plot the approximate frequency response

magnitude of the H(-z) FIR filter when you vary the frequency from 100 Hz up to 3.8 kHz.

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 10

Question 7 [2 pt / 10]: Is this sketch consistent with the expected frequency response magnitude

that is represented in Figure 2 ?

6.4 Sketching the frequency response of the H(z2) FIR filter

In this section, we measure the magnitude frequency response of the modified FIR filter whose

transfer function is H(z2) and that is signaled in the C code as one of the two “Shifted” or

“Upsampled ”cases. Its theoretical frequency response magnitude is depicted in Figure 2.

In this experiment, you will vary the frequency from 100 Hz, up to 3.8 kHz, and take note of the Vpp

and frequency of the output wave represented on the oscilloscope. As in the previous experiment,

only a few frequencies should suffice in addition to 100 Hz (which we will take as an approximation

for 0 Hz), and 3800 Hz (which we will take as an approximation for 4 kHz).

Based on these measurements, sketch in the following plot the approximate frequency response

magnitude of the H(z2) FIR filter when you vary the frequency from 100 Hz up to 3.8 kHz.

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 11

Question 8 [2 pt / 10]: Is this sketch consistent with the expected frequency response magnitude

that is represented in Figure 2 ?

Question 9: All of the above implementations of linear-phase filters are not totally efficient. What

else could be done in order to improve the realization/implementation efficiency ?

7 Extra-class: Generating FIR Filter Coefficient

Header Files Using MATLAB

If the number of filter coefficients is small, a coefficient header file may be edited by hand. To be
compatible with program stm32f7_fir_intr.c and others, a coefficient header file must

define a constant N and declare and initialize the contents of an array h[], which contains N floating
point values.

For larger numbers of coefficients, the MATLAB function stm32f7_fir_coeffs(), defined in file
stm32f7_fir_coeffs.m (and that is included on the ZIP that is available on Moodle), can be used.
This function should be passed a MATLAB array of real-valued coefficient values and will prompt the
user for an output filename.

/

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 12

For example, the coefficient file maf5.h was created by typing the following at the MATLAB
command prompt.

>> x = [0.2, 0.2, 0.2, 0.2, 0.2];

>> stm32f7_fir_coeffs(x)

enter filename for coefficients maf5.h

The coefficient filename must be entered in full, including the suffix .h.

Alternatively, the MATLAB filter design and analysis tool fdatool can be used to calculate FIR filter
coefficients and to export them to the MATLAB workspace (File – Export… – Export To Workspace /
Export As Coefficients). Then, function stm32f7_fir_coeffs() can be used to create a coefficient file
compatible with programs including stm32f7_fir_intr.c. It is recommended that the filter
coefficients values passed to function stm32f7_fir_coeffs() are normalized such that their gain is
unity. fdatool does it automatically, but if you are designing filter coefficients without the aid of
fdatool, you should aim for a passband gain of 1.

Figure 3: Design of a bandpass FIR filter using MATLAB fdatool

Coefficient header file bp1750.h was generated using MATLAB function

stm32f7_fir_coeffs()after designing the filter using fdatool (as shown in 3).

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 13

Note: Additional header and source files are provided in the lab-specific folder provided.

The file maf5.h listed in the following code snippet contains filter coefficient values that will result

in implementation of a five-point moving average filter.

// maf5.h

// this file was generated using function stm32f7_fir_coeffs.m

#define N 5

float h[N]={0.2, 0.2, 0.2, 0.2, 0.2};

8 Conclusions

This laboratory exercise has introduced FIR filters and explored several different frequency response

modifications.

9 Additional References

Moving average filters:

https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf

