

L.EEC025 - Fundamentals of Signal Processing (FunSP)

2022/2023 – 1st semester

Week02, 19 Sept 2022

Objectives:

-getting started with the DSP Education kit

 experiment 7 (LUT-based Real-Time Sine Wave Generation)

 experiment 4 (Basic Analogue Input & Output Using the STM32F746G Disco Board)

 experiment 5 (Delaying the Signal)

DSP Education Kit

LAB 1

Analog Input and Output
Issue 1.0

Contents

1 Introduction ... 1

1.1 Lab overview ... 1

2 Requirements .. 1

2.1.1 Overview of STM32F746G Discovery board ... 1

3 Basic Digital Signal Processing System .. 3

4 Basic Analogue Input and Output Using the STM32F746G Discovery Board

(this experiment is to be executed after the one described in Section 7) 4

4.1 Program operation of stm32f7_loop_intr.c .. 5

4.2 Running the program .. 6

5 Delaying the Signal (NOTE: only if time permitting) 10

6 Creating a Fading Echo Effect (NOTE: we skip this section) 12

6.1.1 Exercise ... 14

7 Real-Time Sine Wave Generation ... 15

7.1 Loading a project and running the project ... 15

7.2 Program operation .. 18

8 Conclusions .. 22

9 Additional References .. 23

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 1

1 Introduction

1.1 Lab overview

In the labs for this course, we will use the STM32F7 Discovery Kit to practice digital signal processing

concepts and explore some of their applications using advanced hardware.

The STM32F746G Discovery board is a low-cost development platform featuring a 212 MHz Arm

Cortex-M7 floating-point processor. It connects to a host PC via a USB A to mini-b cable and uses the

ST-LINK/V2 in-circuit programming and debugging tool. The Keil MDK-Arm development

environment, running on the host PC, enables software written in C to be compiled, linked, and

downloaded to run on the STM32F746G Discovery board. Real-time audio I/O is provided by a

Wolfson WM8994 codec included on the board.

This laboratory exercise introduces the use of the STM32F746G Discovery board and several of the

procedures and techniques that will be used in subsequent laboratory exercises.

2 Requirements

To carry out this lab, you will need:

 An STM32F746G Discovery board

 A PC running Keil MDK-Arm

 MATLAB

 An oscilloscope

 Suitable connecting cables

 An audio frequency signal generator

 Optional: External microphone, although you can also use the microphones on the board

2.1.1 Overview of STM32F746G Discovery board

The STM32F746G Discovery board features a Cirrus Logic WM8994 stereo audio codec, which is

accessed via I2C for control and I2S, using the STM32F746G microcontroller’s serial audio interface

(SAI) peripheral, for data. Analogue input and output signals are accessible via two three-pole (TRS)

3.5 mm jack sockets (LINE IN (CN11) and HEADPHONE OUT(CN10)).

As configured for these exercises, the WM8994 converts an analogue input signal into 16-bit signed

integer sample values, and the DAC converts 16-bit signed integer sample values into an analogue

output signal.

Additionally, the WM8994 has a digital microphone interface, and the STM32F746G Discovery board

provides two MEMS microphones as input devices.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 2

Some of the hardware features of the STM32F746G Discovery board are highlighted in Figure 0.1.

Figure 0.1: STM32F746G Discovery board

Note: For this course lab exercises, JP1 should be set to “5V link USB + 5V.” JP2 should be left open (all STM32F746G

Discovery Kits in the FSP labs have been configured this way already)

In order to prevent hazardous electrical contacts, in the lab, a casing protects the STM32F746G

Discovery board as it is illustrated in Figure 0.2.

Figure 0.2: Actual lab casing of the STM32F746G Discovery board

Very important notice: when

plugging the source generator to the

input of the kit, please make sure

that you use the adapter with the

blue mini-jack whose interface board

has a resistor divider. It is meant to

protect the analog input of the kit

against excessive voltage levels.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 3

3 Basic Digital Signal Processing System

A basic DSP system that is suitable for processing audio frequency signals comprises a digital signal

processor and analogue interfaces as shown in Figure 2. The STM32F746G Discovery board provides

such a system, using a Cortex-M7 floating point processor and a WM8994 codec.

The term codec refers to the coding of analogue waveforms as digital signals and the decoding of

digital signals as analogue waveforms. The WM8994 codec performs both the Analogue to Digital

Conversion (ADC) and Digital to Analogue Conversion (DAC) functions shown in Figure 2.

Figure 2: Basic digital signal processing system

Program code may be developed, downloaded, and run on the STM32F746G Discovery board using

the Keil MDK-Arm integrated development environment (IDE). You will not be required to write C

programs from scratch, but you will learn how to compile, link, download, and run the example

programs provided and, in some cases, make minor modifications to their source files.

You will learn how to use a subset of the features provided by MDK-Arm in order to do this (using

the full capabilities of MDK-Arm is beyond the scope of this set of laboratory exercises). The

emphasis of this set of laboratory exercises is on the digital signal processing concepts implemented

by the programs.

Most of the example programs are quite short, and this is typical of real-time DSP applications.

Compared with applications written for general purpose microprocessor systems, DSP applications

are more concerned with the efficient implementation of relatively simple algorithms. In this

context, efficiency refers to speed of execution and the use of resources such as memory.

The examples in this document introduce some of the features of MDK-Arm and the STM32F746G

Discovery board. In addition, you will learn how to use MATLAB in order to analyze audio signals.

ADC DAC
digital

signal

processor
analogue

input

signal

analogue

output

signal

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 4

4 Basic Analogue Input and Output Using the

STM32F746G Discovery Board (this experiment is to be

executed after the one described in Section 7)

The code snippet below shows a source file for a program that simply copies input samples read

from two digital microphones mounted on the board and connected to the WM8994 codec and the

WM8994 DAC. In effect, the program connects the digital microphones to the headphone output

socket on the board. This simple program is important because many of the other example programs

that will be used in subsequent laboratory exercises use the same interrupt-based, real-time

structure. It is worth taking the time to ensure that you understand how program

stm32f7_loop_intr.c works, which will also be explained in this document.

In addition, this example describes the MDK-Arm development environment and the editing,

compiling, linking, and downloading procedures that you will use again for subsequent examples.

// stm32f7_loop_intr.c

#include "stm32f7_wm8994_init.h"

#include "stm32f7_display.h"

#define SOURCE_FILE_NAME "stm32f7_loop_intr.c"

extern int16_t rx_sample_L;

extern int16_t rx_sample_R;

extern int16_t tx_sample_L;

extern int16_t tx_sample_R;

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

// when we arrive at this interrupt service routine

// the most recent input sample values are (already) in global

// variables rx_sample_L and rx_sample_R

// this routine should write new output sample values in

// global variables tx_sample_L and tx_sample_R

 tx_sample_L = rx_sample_L;

 tx_sample_R = rx_sample_R;

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 5

 BSP_LED_Toggle(LED1);

 return;

}

int main(void)

{

 stm32f7_wm8994_init(AUDIO_FREQUENCY_48K,

 IO_METHOD_INTR,

 INPUT_DEVICE_DIGITAL_MICROPHONE_2,

 OUTPUT_DEVICE_HEADPHONE,

 WM8994_HP_OUT_ANALOG_GAIN_6DB,

 WM8994_LINE_IN_GAIN_0DB,

 WM8994_DMIC_GAIN_17DB,

 SOURCE_FILE_NAME,

 NOGRAPH);

 while(1) {}

}

4.1 Program operation of stm32f7_loop_intr.c

The operation of program stm32f7_loop_intr.c is as follows.

In function main(), an initialization function stm32f7_wm8994_init() is called. This

configures the STM32F746G processor and WM8994 codec such that the codec will read (left and

right channel) sample values from the digital microphones and interrupt the processor at a sampling

frequency determined by the parameter AUDIO_FREQUENCY_48K passed to the function.

Parameter INPUT_DEVICE_DIGITAL_MICROPHONE_2 specifies that input to the WM8994 will

come from the digital microphones on the STM32F746G Discovery board.

Parameter IO_METHOD_INTR passed to function stm32f7_wm8994_init()determines that

interrupt, as opposed to DMA-based I/O, will be used by the program.

Parameter OUTPUT_DEVICE_HEADPHONE is redundant insofar as the headphone socket (CN10) is

the only audio output currently supported by the DSP Education Kit.

Parameters WM8994_HP_OUT_ANALOG_GAIN_6DB, WM8994_LINE IN_GAIN_0DB, and

WM8994_DMIC_GAIN_17DB concern the configuration of programmable gain blocks in the signal

path through the codec.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 6

Parameters SOURCE_FILE_NAME and NOGRAPH influence what will be shown on the Discovery

board’s LCD.

There is no need to understand every detail of the initialization carried out by function

stm32f7_wm8994_init(). After it has been called, interrupts generated by the Serial Audio

Interface (SAI) peripheral in the STM32F746G microcontroller (to which the WM8994 codec is

connected) will be enabled, and each time an interrupt occurs, the interrupt service routine function

BSP_AUDIO_SAI_Interrupt_CallBack()will be called. One interrupt will occur per

sampling period, and both left and right channel samples are processed in one call to function

BSP_AUDIO_SAI_Interrupt_CallBack().

Following initialization, function main()enters an endless while() loop, doing nothing but

waiting for interrupts.

When function BSP_AUDIO_SAI_Interrupt_CallBack() is called, new input sample

values (from the WM8994 codec1) may be read as variables rx_sample_L and rx_sample_R,

and sample values written to variables tx_sample_L and tx_sample_R will be written to the

WM8994 DAC at the next sampling instant.

1Input sample values may have come either from the analogue LINE IN socket (CN11) on the Discovery board,

via the WM8994 ADC, or from the two digital microphones on the Discovery board, via a digital interface on

the WM8994.

4.2 Running the program

The following steps assume that you have followed all the steps described in Section 7.

To run the stm32f7_loop_intr.c program, follow these steps:

1. If the µVision 5 project DSP_Education_Kit is not yet open, open it by double-clicking

on its icon, as indicated in Section 7.1 b) .

2. Right-click on the STM32F746_DISCOVERY folder in the Project pane and select Manage

Project Items, after which you should get a window like the one shown below:

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 7

Figure 3: Screenshot of Manage Project Items

3. Delete stm32f7_sine_lut_intr.c using the delete icon on the top right of the

Files pane and then click on Add Files.

4. Find stm32f7_loop_intr.c in the DSP Education Kit\Src folder and add it to the

project. Click OK. This is illustrated in the following two images.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 8

5. You should now see a project structure like that shown in the following figure.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 9

Figure 4: Screenshot of MDK-Arm showing the DSP_Education_Kit project

Note: Files stm32f7_ loop_intr.c, stm32f7_wm8994_init.c,

stm32f7xx_it.c, and stm32f7_display.c are supplied as part of the DSP

Education Kit. Other files making up the project shown in Figure 4 are part of the STM32F746

Discovery board DFP Software Pack.

6. Connect the STM32F746 Discovery board to the host PC using a USB A to mini-b cable.

7. Plug the headphones into the headset jack socket (CN10) on the board.

8. Build the project by selecting the Project > Build target or by clicking on the Build toolbar

button .

9. After successfully building the project with no errors, switch to the debugger mode (and

download the executable code into flash memory) by clicking on the Start/Stop Debug

Session toolbar button .

10. Once the Debugger View has appeared, click on the Run toolbar button .

11. Once the program is running, you should see a start screen on the LCD on the board as

shown in Figure 5. You should be able to hear sounds picked up by the digital microphones

on the STM32F746 Discovery board (micro right and micro left on the right side of the LCD

screen as shown in Figure 5). Depending on the characteristics of the headphones you are

using, the sound may be loud or quiet. If you cannot hear anything, try blowing gently onto

the microphones.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 10

Figure 5: Start screen for program stm32f7_loop_intr.c

Optional: If you would like to use an external microphone instead of the microphones on the board,

you can pass the parameter INPUT_DEVICE_INPUT_LINE_1 (instead of

INPUT_DEVICE_DIGITAL_MICROPHONE_2) to function stm32f7_wm8994_init(),you

can listen to a signal input either via the LINE IN (CN11) socket on the board or via the digital

microphones on the Discovery board. You can do this by editing the source file

stm32f7_loop_intr.c, re-building the project, downloading, and running the program.

5 Delaying the Signal (NOTE: only if time permitting)

Some simple, yet striking, effects can be achieved simply by delaying the samples as they pass from

input to output. Program stm32f7_delay_intr.c demonstrates this. In order to run this

program simply repeat steps 1-10 of Section 4.2. In step 3, delete file stm32f7_loop_intr.c

and, in step 4, look for file stm32f7_delay_intr.c and add it to the project.

A delay line is implemented using the array buffer to store samples as they are read from the

digital microphones. Once the array is full, the pointer bufptr is reset and program overwrites the

oldest stored input sample with the newest input sample. Just prior to overwriting the oldest stored

input sample in buffer, that sample is retrieved, added to the current input, and written to the

WM8994 DAC. The length of the delay is determined by the value of the constant

DELAY_BUF_SIZE. As supplied, this is equal to 24000 samples, corresponding to a delay of 500 ms

at a sampling rate of 48 kHz.

The following code snippet shows the source code of stm32f7_delay_intr.c.

#include "stm32f7_wm8994_init.h"

#include "stm32f7_display.h"

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 11

#define SOURCE_FILE_NAME "stm32f7_delay_intr.c"

#define DELAY_BUF_SIZE 24000

extern int16_t rx_sample_L;

extern int16_t rx_sample_R;

extern int16_t tx_sample_L;

extern int16_t tx_sample_R;

int16_t buffer[DELAY_BUF_SIZE];

int16_t bufptr = 0;

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

// when we arrive at this interrupt service routine (callback)

// the most recent input sample values are (already) in global variables

// rx_sample_L and rx_sample_R

// this routine should write new output sample values in

// global variables tx_sample_L and tx_sample_R

 int16_t delayed_sample;

 delayed_sample = buffer[bufptr];

 tx_sample_L = delayed_sample + rx_sample_L;

 buffer[bufptr] = rx_sample_L;

 bufptr = (bufptr+1) % DELAY_BUF_SIZE;

 tx_sample_R = tx_sample_L;

 BSP_LED_Toggle(LED1);

 return;

}

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 12

int main(void)

{

 stm32f7_wm8994_init(AUDIO_FREQUENCY_48K,

 IO_METHOD_INTR,

 INPUT_DEVICE_DIGITAL_MICROPHONE_2,

 OUTPUT_DEVICE_HEADPHONE,

 WM8994_HP_OUT_ANALOG_GAIN_6DB,

 WM8994_LINE_IN_GAIN_0DB,

 WM8994_DMIC_GAIN_17DB,

 SOURCE_FILE_NAME,

 NOGRAPH);

 while(1){}

}

Figure 6: Block diagram representation of program stm32f7_delay_intr.c

6 Creating a Fading Echo Effect (NOTE: we skip this section)

By feeding back a fraction of the output of the delay line to its input, a fading echo effect can be

realized. Program stm32f7_echo_intr.c, shown in the following code snippet, does this.

// stm32f7_echo_intr.c

#include "stm32f7_wm8994_init.h"

#include "stm32f7_display.h"

#define SOURCE_FILE_NAME "stm32f7_echo_intr.c"

rx_sample_L
delayed_sample
+ rx_sample_L

T
+ +

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 13

#define DELAY_BUF_SIZE 6000

#define GAIN 0.6f

extern int16_t rx_sample_L;

extern int16_t rx_sample_R;

extern int16_t tx_sample_L;

extern int16_t tx_sample_R;

int16_t buffer[DELAY_BUF_SIZE];

int16_t bufptr = 0;

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

// when we arrive at this interrupt service routine (callback)

// the most recent input sample values are (already) in global variables

// rx_sample_L and rx_sample_R

// this routine should write new output sample values in

// global variables tx_sample_L and tx_sample_R

 int16_t delayed_sample;

 delayed_sample = buffer[bufptr];

 tx_sample_L = delayed_sample + rx_sample_L;

 buffer[bufptr] = rx_sample_L + delayed_sample*GAIN;

 bufptr = (bufptr+1) % DELAY_BUF_SIZE;

 tx_sample_R = 0;

 BSP_LED_Toggle(LED1);

 return;

}

int main(void)

{

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 14

 stm32f7_wm8994_init(AUDIO_FREQUENCY_48K,

 IO_METHOD_INTR,

 INPUT_DEVICE_DIGITAL_MICROPHONE_2,

 OUTPUT_DEVICE_HEADPHONE,

 WM8994_HP_OUT_ANALOG_GAIN_6DB,

 WM8994_LINE_IN_GAIN_0DB,

 WM8994_DMIC_GAIN_17DB,

 SOURCE_FILE_NAME,

 NOGRAPH);

 while(1){}

}

6.1.1 Exercise

Experiment with different values of the constants DELAY_BUF_SIZE and GAIN (the delay in

seconds is equal to DELAY_BUF_SIZE divided by the sampling frequency in Hz, and the fraction of

the delayed signal fed back is equal to GAIN.)

1. What would happen if the value of GAIN were made greater than or equal to 1?

2. Study the program listing in stm32f7_echo_intr.c and, with reference to Figure 6,

draw a block diagram of the system it implements in the space provided below. In the space

below that, sketch what you think its response to a unit impulse at time t = 0 would be (with

a GAIN of 0.6 and a DELAY_BUF_SIZE size of 2000 samples).

Block diagram representation of program stm32f7_echo_intr.c:

6.1.2 Disconnecting the STM32F7 Discovery Kit

When you are done with all of your experiments and before leaving the class, it is always a good idea

to eject the device prior to unplugging it, you can do this by selecting “Safely Remove Hardware and

Eject Media” from the toolbar and then click on Eject DIS_F746NG, as the following figure illustrates.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 15

7 Real-Time Sine Wave Generation

Several ways exist to generate deterministic (and periodic) discrete-time signals such as a

sine wave. We mention briefly three and focus on one of them for the purpose of this lab

class. One way is by calling a mathematical function that generates samples of that discrete-

time signal. In this case, an argument, or parameter, is provided when that function is

called, for example, ���(�), or ���(�). Another way is by using a difference equation as we

shall see later on in this course. This difference equation generates a new sample based on

other samples that have been generated previously, or that are available by some other

means. A third way is by means of a lookup table. In this case, all samples of interest of that

discrete-time signal are precomputed and stored in memory, in a table, also called lookup

table (LUT). The signal samples are simply read from that LUT, in a sequential fashion, which

saves arithmetic computations.

7.1 Loading a project and running the project

A project consists of a set of files, including configuration files and C code files, that are combined in

the Keil MDK-Arm development environment (IDE), allowing them to be compiled, linked, and

downloaded to run on the STM32F746G Discovery board. We illustrate how to follow through these

steps by using the main C source file called stm32f7_sine_lut_intr.c which allows to

generate a sinusoidal signal using interrupts (see Section 4) and a table lookup method.

a) Using the Windows File Explorer, navigate to folder:
C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\MDK-ARM

b) In this folder you will find the DSP_Education_Kit.uvprojx project file which we

will use as our baseline project in all of our lab classes. This project file is represented by the

icon , or just . Double-click on this file/icon.

c) Doing so opens up the Keil MDK-Arm development environment (Keil IDE, for short) which is

called microVision (µVision). You will see then a structure of files belonging to the project as

illustrated next.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 16

The project contains the example file stm32f7_sine_lut_intr.c, which contains the

main() function.

d) Connect the STM32F746 Discovery board to the host PC using a USB A to mini-b cable that is

available on the laboratory bench.

e) Connect the output audio jack socket (CN10) on the board to the oscilloscope using the

cable that is available on the laboratory bench (in this and future labs you may also plug the

headphones into the output audio jack socket (CN10) on the board).

f) We are now ready to start the compilation process. Build the project by selecting Project >

Build target or by clicking on the Build toolbar button (or press F7), as illustrated next.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 17

g) After successfully building the project with no errors, switch to the debugger mode (and

download the executable code into the STM32F746 flash memory) by clicking on the

Start/Stop Debug Session toolbar button .

h) Once the Debugger View has appeared, click on the Run toolbar button (or press F5), as

shown in the following figure:

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 18

The program is now running on the STM32F746 Kit. Let’s have a look at its structure and

operation.

IMPORTANT NOTE: If you want to run different example programs, simply replace file
stm32f7_sine_lut_intr.c in the MDK-Arm project with another source file. This

procedure is explained in detail in Section 4 above. All of the source files are in the DSP
Education Kit\Src folder. Detailed instructions for the different program examples
will be provided throughout the semester.

7.2 Program operation

The C source file stm32f7_sine_lut_intr.c, shown in the code snippet below, generates a

sinusoidal signal using interrupts and a table lookup method.

// stm32f7_sine_lut_intr.c

#include "stm32f7_wm8994_init.h"

#include "stm32f7_display.h"

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 19

#define SOURCE_FILE_NAME "stm32f7_sine_lut_intr.c"

#define LOOPLENGTH 8

extern int16_t rx_sample_L;

extern int16_t rx_sample_R;

extern int16_t tx_sample_L;

extern int16_t tx_sample_R;

int16_t sine_table[LOOPLENGTH] = {0, 7071, 10000, 7071, 0, -7071, -10000, -7071};

int16_t sine_ptr = 0; // pointer into lookup table

void BSP_AUDIO_SAI_Interrupt_CallBack()

{

// when we arrive at this interrupt service routine (callback)

// the most recent input sample values are (already) in global variables

// rx_sample_L and rx_sample_R

// this routine should write new output sample values in

// global variables tx_sample_L and tx_sample_R

 BSP_LED_On(LED1);

 tx_sample_L = sine_table[sine_ptr];

 sine_ptr = (sine_ptr+1)%LOOPLENGTH;

 tx_sample_R = tx_sample_L;

 BSP_LED_Off(LED1);

 return;

}

int main(void)

{

 stm32f7_wm8994_init(AUDIO_FREQUENCY_8K,

 IO_METHOD_INTR,

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 20

 INPUT_DEVICE_INPUT_LINE_1,

 OUTPUT_DEVICE_HEADPHONE,

 WM8994_HP_OUT_ANALOG_GAIN_0DB,

 WM8994_LINE_IN_GAIN_0DB,

 WM8994_DMIC_GAIN_9DB,

 SOURCE_FILE_NAME,

 GRAPH);

 plotSamples(sine_table, LOOPLENGTH, 32);

 while(1){}

}

An eight-point lookup table is initialized using the array sine_table such that the value of

sine_table[i] is equal to

sine_table[�] = 10000 ���((2��/8) + �)

where, in this case, � = 0. The LOOPLENGTH values in array sine_table are samples of exactly

one cycle of a sinusoid.

Just as in the previous examples (namely in Section 4), in function main(), initialization function

stm32f7_wm8994_init() is called. This configures processor and codec such that the WM8994

will sample, and interrupt the processor, at a frequency determined by the parameter value

AUDIO_FREQUENCY_8K, i.e., in this case at 8 kHz. Interrupts will occur every 0.125 ms.

Following the call to function stm32f7_wm8994_init(), function main() enters an endless

loop, doing nothing but waiting for interrupts (which will occur once per sampling period).

On interrupt, the interrupt service routine function

BSP_AUDIO_SAI_Interrupt_CallBack() is called and, in that routine, the most important

program statements are executed: the sample values read from array sine_table are written to

both channels to the DAC and the index variable sine_ptr is incremented to point to the next

value in the array.

The 1 kHz frequency of the sinusoidal output signal corresponds to the eight samples per cycle

output at a rate of 8 kHz.

The WM8994 DAC is effectively a low pass reconstruction filter that interpolates between output

sample values to give a continuous sinusoidal analogue output signal as shown in Figure 7. This will

be explained further in future FunSP classes.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 21

Figure 7: Analog output generated by program stm32f7_sine_lut_intr.c

When you run the program, you should see a start screen on the LCD as shown in Figure 8. Press the

blue user pushbutton to continue (see Figure 0.1), and you should see on the LCD a graphical

representation of the sequence of discrete sample values being written to the DAC (Figure 9). The

sample values are represented as bars in the graph on the LCD to emphasize that it is the discrete

sample values written to the DAC that are being shown and not the continuous-time signal output

by the DAC. Connect one channel of the audio card HEADPHONE OUT output to an oscilloscope and

verify that the output signal is a 1 kHz sinusoid using both time-domain and frequency-domain

oscilloscope displays (NOTE: frequency-domain view is not necessary for now).

Figure 8: Start screen for program stm32f7_sine_lut_intr.c

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 22

Figure 9: Graphical representation of first 32 sample values output by program stm32f7_sine_lut_intr.c

Now that you successfully observed, on both output channels (Left and Right), the same 1 kHz

output sinusoidal signal, proceed to modify the code (i.e., edit the source file

stm32f7_sine_lut_intr.c) such as to:

a) observe on the Left and Right channels two out-of-phase 1 kHz sinusoids,

b) observe on the Left and Right channels a 2 kHz output sinusoid (either in-phase or out-of-

phase on both channels).

c) How should you modify stm32f7_sine_lut_intr.c in order to generate a 500 Hz

sinusoid ?

After this experiment, time permitting (i.e., it is not mandatory) you can proceed to Section 4, and

then to Section 5.

8 Conclusions

At the end of this exercise, you should have become familiar with several of the tools and techniques

that you will use in subsequent lab exercises.

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Page 23

9 Additional References

Link to Board information and resources:

https://www.st.com/en/evaluation-tools/32f746gdiscovery.html#overview

Using DMA controllers in STM Discovery boards:

https://www.st.com/content/ccc/resource/technical/document/application_note/27/46/7c/ea/2d/

91/40/a9/DM00046011.pdf/files/DM00046011.pdf/jcr:content/translations/en.DM00046011.pdf

For more details about DMA:

http://cires1.colorado.edu/jimenez-group/QAMSResources/Docs/DMAFundamentals.pdf

