
 

 
 

 

L.EEC025 - Fundamentals of Signal Processing (FunSP) 

2022/2023 – 1st semester 

 

Week03, 26 Sep 2022 

Objectives: 

-getting started with the DSP Education kit (2nd part) 

 generating sinusoids from a LUT 

 viewing program output 

 

 

 

 

 

 

DSP Education Kit 

LAB 2  

LUT sinusoid generation and viewing 

Program Output 
Issue 1.0 

 

 



 
 
 

 
 

  
 

Contents 

1 Introduction ............................................................................................. 1 

1.1 Lab overview ........................................................................................................................... 1 

2 Requirements .......................................................................................... 1 

2.1.1 STM32F746G Discovery board ........................................................................................ 1 

3 Basic Digital Signal Processing System ...................................................... 2 

4 Real-Time Sine Wave Generation ............................................................. 3 

4.1 Program operation .................................................................................................................. 3 

4.2 Viewing program output using MATLAB (sinusoid) ................................................................ 4 

4.3 Viewing program output using MATLAB (noise) ..................................................................... 6 

5 Conclusions .............................................................................................. 8 

6 Additional References .............................................................................. 8 

 

 



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 1 

1 Introduction 

1.1 Lab overview 

The STM32F746G Discovery board is a low-cost development platform featuring a 212 MHz Arm 

Cortex-M7 floating-point processor. It connects to a host PC via a USB A to mini-b cable and uses the 

ST-LINK/V2 in-circuit programming and debugging tool. The Keil MDK-Arm development 

environment, running on the host PC, enables software written in C to be compiled, linked, and 

downloaded to run on the STM32F746G Discovery board. Real-time audio I/O is provided by a 

Wolfson WM8994 codec included on the board. 

This laboratory exercise introduces the use of the STM32F746G Discovery board and several of the 

procedures and techniques that will be used in subsequent laboratory exercises. 

 

 

2 Requirements 

To carry out this lab, you will need: 

 An STM32F746G Discovery board 

 A PC running Keil MDK-Arm 

 MATLAB 

 An oscilloscope 

 Suitable connecting cables 

 An audio frequency signal generator 

 Optional: External microphone, although you can also use the microphones on the board 

 

2.1.1 STM32F746G Discovery board 

An overview of the STM32F746G Discovery board can be found in the Getting Started Guide 

(previous PL class). 

  



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 2 

3 Basic Digital Signal Processing System 

A basic DSP system that is suitable for processing audio frequency signals comprises a digital signal 

processor and analogue interfaces as shown in Figure 1. The STM32F746G Discovery board provides 

such a system, using a Cortex-M7 floating point processor and a WM8994 codec. 

The term codec refers to the coding of analogue waveforms as digital signals and the decoding of 

digital signals as analogue waveforms. The WM8994 codec performs both the Analogue to Digital 

Conversion (ADC) and Digital to Analogue Conversion (DAC) functions shown in Figure 1. 

 

Figure 1: Basic digital signal processing system 

Program code may be developed, downloaded, and run on the STM32F746G Discovery board using 

the Keil MDK-Arm integrated development environment. You will not be required to write C 

programs from scratch, but you will learn how to compile, link, download, and run the example 

programs provided, and in some cases, make minor modifications to their source files. 

You will learn how to use a subset of the features provided by MDK-Arm in order to do this (using 

the full capabilities of MDK-Arm is beyond the scope of this set of laboratory exercises). The 

emphasis of this set of laboratory exercises is on the digital signal processing concepts implemented 

by the programs. 

Most of the example programs are quite short, and this is typical of real-time DSP applications. 

Compared with applications written for general purpose microprocessor systems, DSP applications 

are more concerned with the efficient implementation of relatively simple algorithms. In this 

context, efficiency refers to speed of execution and the use of resources such as memory. 

The examples in this document introduce some of the features of MDK-Arm and the STM32F746G 

Discovery board. In addition, you will learn how to use MATLAB in order to analyze audio signals. 

 

  

ADC DAC
digital

signal

processor
analogue

input

signal

analogue

output

signal



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 3 

4 Real-Time Sine Wave Generation 

4.1 Program operation 

Consider the C source file  stm32f7_sine_lut_intr_FunSP.c, shown in the code snippet 

below, which is a modified version of the stm32f7_sine_lut_intr.c already tested in the 

previous PL class. The stm32f7_sine_lut_intr_FunSP.c source file is available on the 

Moodle platform. 

// stm32f7_sine_lut_intr_FunSP.c 

 

#include "stm32f7_wm8994_init.h" 

#include "stm32f7_display.h" 

 

#define SOURCE_FILE_NAME "stm32f7_sine_lut_intr_FunSP.c" 

#define LOOPLENGTH 8 

 

extern int16_t rx_sample_L; 

extern int16_t rx_sample_R; 

extern int16_t tx_sample_L; 

extern int16_t tx_sample_R; 

 

int16_t sine_table[LOOPLENGTH] = {0, 7071, 10000, 7071, 0, -7071, -10000, -7071}; 

int16_t sine_ptr_L = 0; int16_t sine_ptr_R = LOOPLENGTH/4;  // pointers into 

lookup table 

 

void BSP_AUDIO_SAI_Interrupt_CallBack() 

{ 

// when we arrive at this interrupt service routine (callback) 

// the most recent input sample values are (already) in global variables 

// rx_sample_L and rx_sample_R 

// this routine should write new output sample values in 

// global variables tx_sample_L and tx_sample_R 

 

  BSP_LED_On(LED1); 

  tx_sample_L = sine_table[sine_ptr_L]; 

  tx_sample_R = sine_table[sine_ptr_R]; 

  sine_ptr_L = (sine_ptr_L+1)%LOOPLENGTH; 

  sine_ptr_R = (sine_ptr_R+1)%LOOPLENGTH; 

  tx_sample_R *= tx_sample_L; 

  BSP_LED_Off(LED1); 

  return; 

} 

 

int main(void) 

{   

  stm32f7_wm8994_init(AUDIO_FREQUENCY_8K, 

                      IO_METHOD_INTR, 

                      INPUT_DEVICE_INPUT_LINE_1, 

                      OUTPUT_DEVICE_HEADPHONE, 

                      WM8994_HP_OUT_ANALOG_GAIN_0DB, 



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 4 

                      WM8994_LINE_IN_GAIN_0DB, 

                      WM8994_DMIC_GAIN_9DB, 

                      SOURCE_FILE_NAME, 

                      GRAPH); 

  plotSamples(sine_table, LOOPLENGTH, 32); 

  while(1){} 

}  

 
This code generates two output sinewaves that are different in their frequencies and amplitudes. 

 

 

Question 1 [ 3pt / 10 ]: Compare the two C source files and explain: what are the analytical 

expressions that describe the two sinusoids that can be observed on the output LEFT and RIGHT 

channels ? 

 

 

Question 2 [ 2pt / 10 ]: Copy the new stm32f7_sine_lut_intr_FunSP.c  source  file to the 

source code directory: 

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\Src  

and proceed, as explained in Section 4.2 of guide of the previous PL class, to replace in the Project, 

the existing main() source file, by the current one (stm32f7_sine_lut_intr_FunSP.c), 

and then proceed to compile the new code (i.e., to build the Project) and to download it to the 

STM32F7 Kit (by starting the debug session and then pressing “Run”). 

When you take the two output analog LEFT and RIGHT channels of the STM32F7 kit to the inputs 

CHAN1 and CHAN2 of the oscilloscope, do you observe the waves you expect (as in Question 1) ? If 

not, why? 

 

 

4.2 Viewing program output using MATLAB (sinusoid) 

To view your program output in Matlab, you can first store the output values into a file and then use 

Matlab to load the values from the saved file. 

stm32f7_sine_lut_buf_intr.c shows how to store the output values, it is very similar to 

program stm32f7_sine_lut_intr.c, but it also stores the most recent BUFFER_LENGTH 

number of output values in the array buffer. Array buffer is of type float32_t for 

compatibility with the MATLAB function that will be used to view its contents. 

To save the program output into a file and view them in Matlab, follow these steps:  

1. Run the program and press the user button to start the program. 

2. Halt it by clicking on the Stop toolbar button in the MDK_Arm debugger. 



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 5 

3. Type the variable name buffer as the Address in the debugger’s Memory 1 window. Right-

click on the Memory 1 window and set the displayed data type to Decimal and Float as 

shown in Fig. 2. 

 
Figure 2: Memory 1 window showing the contents of array buffer 

 

The start address of array buffer will be displayed in the top left-hand corner of the 

window. 

4. Use the following command at the prompt in the debugger’s Command window to save the 

contents of the buffer array to a file in your project folder. 

SAVE <filename> <start address>, <end address> 

The end address should be the start address plus 0×190 (bytes) representing 100 32-bit 

sample values. For example, 

SAVE sinusoid.dat 0x200000B4, 0x20000244 

   

Figure 3: Saving data to file in MDK-Arm 

 

5. Launch MATLAB and run the MATLAB function stm32f7_logfft.m (provided with the 

DSP Education Kit in General_Matlab_Files\) to obtain a graphical representation of the 

contents of the buffer. The MATLAB function will require you to input some information, 

such as the saved .dat filename (full path) and sampling frequency. 

NOTE: Matlab function stm32f7_logfft.m  is available on Moodle. You also need function 

hexsingle2num.m which should be co-located with stm32f7_logfft.m . 



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 6 

Question 3 [ 3pt / 10 ]: When you view the contents of sinusoid.dat using the Matlab 

command file stm32f7_logfft.m, you observe a “discontinuity” similar to that illustrated in Fig. 

4. How do you explain that “discontinuity” ? Indicate one possible alternative value for 

BUFFER_LENGTH that is closest to 100 and that avoids that “discontinuity”. 

 

 

Figure 4: Saving data to file in MDK-Arm 

 

4.3 Viewing program output using MATLAB (noise) 

Repeat 4.2 but this time using the provided C file named 

stm32f7_sine_lut_buf_intr_FunSP.c, which you should copy to the  Examples\DSP 

Education Kit\Src  directory (in case it is not yet there). This code is a modified version of the 

previous code in the sense that it calls function prand() that generates pseudorandom sample 

values using the Park-Miller algorithm (a random number generator). Thus, the left channel outputs 

a sinusoid whereas the right channel outputs noise. 

 

// stm32f7_sine_lut_buf_intr_FunSP.c 

 

#include "stm32f7_wm8994_init.h" 

#include "stm32f7_display.h" 

 

#define SOURCE_FILE_NAME "stm32f7_sine_lut_buf_intr_FunSP.c" 

#define LOOPLENGTH 8 

#define BUFFER_LENGTH 1000 // was 100 

 

extern int16_t rx_sample_L; 

extern int16_t rx_sample_R; 

extern int16_t tx_sample_L; 

extern int16_t tx_sample_R; 

 

int16_t sine_table[LOOPLENGTH] = {0, 7071, 10000, 7071, 0, -7071, -10000, -7071}; 

int16_t sine_ptr = 0;  // pointer into lookup table 



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 7 

float32_t buffer[BUFFER_LENGTH]; 

int16_t buf_ptr = 0;   // pointer into buffer 

 

void BSP_AUDIO_SAI_Interrupt_CallBack() 

{ 

// when we arrive at this interrupt service routine (callback) 

// the most recent input sample values are (already) in global variables 

// rx_sample_L and rx_sample_R 

// this routine should write new output sample values in 

// global variables tx_sample_L and tx_sample_R 

 

  tx_sample_L = sine_table[sine_ptr]; 

  tx_sample_R = prand(); 

 //tx_sample_R = tx_sample_L; 

  buffer[buf_ptr] = tx_sample_R; 

 // buffer[buf_ptr] = tx_sample_L; 

 sine_ptr = (sine_ptr+1)%LOOPLENGTH; 

 buf_ptr = (buf_ptr+1)%BUFFER_LENGTH; 

  

  BSP_LED_Toggle(LED1); 

 

  return; 

} 

 

int main(void) 

{   

  stm32f7_wm8994_init(AUDIO_FREQUENCY_8K, 

                      IO_METHOD_INTR, 

                      INPUT_DEVICE_DIGITAL_MICROPHONE_2, 

                      OUTPUT_DEVICE_HEADPHONE, 

                      WM8994_HP_OUT_ANALOG_GAIN_6DB, 

                      WM8994_LINE_IN_GAIN_0DB, 

                      WM8994_DMIC_GAIN_9DB, 

                      SOURCE_FILE_NAME, 

                      GRAPH); 

 plotSamples(sine_table, LOOPLENGTH, 32); 

  while(1){} 

}  

 

Replace the code file in Section 4.2 by this new file (stm32f7_sine_lut_intr_FunSP.c ) and 

build and run the program again. 

 

Repeat the above procedure to save the contents of array buffer to a file (noise.dat) in your 

project folder. 

SAVE <filename> <start address>, <end address> 

The end address should be the start address plus 0xFA0 (bytes) representing 1000 32-bit 

sample values. For example, 

SAVE noise.dat 0x200000B4, 0x20001054 



 
 
 

 
 

 Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.  
Page 8 

Question 4 [ 2pt / 10 ]: Proceed to repeat the above file analysis by running the MATLAB function 

stm32f7_logfft.m this time with noise.dat. Does the observed waveform look like one 

would expect ? 

 

The following is to be carried out of the class (and is not considered for grading): how would you 

characterize the noise that is generated by the DSP Education kit pseudorandom generator ? Adapt 

the Matlab code that is suggested in Problem 1 of this week’s Extra Exercises to check its auto-

correlation function and its PDF (Probability Density Function). 

 

 

 

 

5 Conclusions 

At the end of this exercise, you should have become familiar with a simple procedure to import to 

Matlab data that is generated in the DSP Education Kit. This will be used subsequent lab exercises. 

 

6 Additional References 

Link to Board information and resources: 

https://www.st.com/en/evaluation-tools/32f746gdiscovery.html#overview 

 


